
601.220 Intermediate Programming

Summer 2024, Meeting 21 (July 19nd)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Today’s agenda

• Review exercise 33
• Day 35 recap questions
• Exercise 35
• Day 36 recap questions
• Exercise 36

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Reminders/Announcements

• Final project due by 11pm on Friday, July 26th
• Final grades for the class need to be calculated in a short

amount of time.
• Late submissions for final project will not be allowed under any

circumstance.
• If submitted late there is a chance we won’t be able to grade

the project.
• Final exam in class on Friday, July 26th

• Review materials will be posted after todays class on piazza.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

Add accessor function for member variable a to class A:

int get_a() const { return a; }

B (and other classes derived from A) will need these to get the
values of this member variable. (The member variable d can be
accessed directly because it is protected rather than private.)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

A::toString member function:

virtual std::string toString() const {
std::stringstream ss;
ss << "[Aclass: a = " << a

<< ", d = " << d
<< ", size = " << sizeof(*this)
<< "]";

return ss.str();
}

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

B::toString member function:

virtual std::string toString() const override {
std::stringstream ss;
ss << "[Bclass: a = " << get_a()

<< ", b = " << b
<< ", d = " << d
<< ", size = " << sizeof(*this)
<< "]";

return ss.str();
}

Because the a member variable in the base class A is private, it’s
necessary to call a getter function to access its value.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

in main(), the following statement does not compile:

bobj = aobj;

It is possible to downcast an aobj to an bobj with a static or
dynamic cast

// Static cast will not perform type checks
Derived* bobj = static_cast<Derived*>(aobj);
// Dynamic cast will perform type checks
Derived* bobj = static_cast<Derived*>(aobj);

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

fun() pure virtual member function in class A:

virtual int fun() const = 0;

Implementation in class B:

virtual int fun() const override {
return int(get_a() * b * d);

}

Note that A is no longer instantiable, so variable definitions like

A aobj(10);

are no longer allowed.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review
class C : public A {
private:

int e;

public:
C(int val = 0) : e(val) { } // sets a and d to 0 using

// A's default ctor
virtual std::string toString() const override {

std::stringstream ss;
ss << "[Cclass: a = " << get_a()

<< ", d = " << d
<< ", e = " << e
<< " size = " << sizeof(*this)
<< "]";

return ss.str();
}

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 33 review

// C class continued

virtual int fun() const override {
return int(get_a() * d * e);

}
};

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Day 35 recap questions

1 What is the difference between an unscoped and a scoped
enum?

2 Why do we use exceptions?
3 What keyword is used to generate an exception? What

keyword indicates that the block of code may generate an
exception? What keyword indicates what should be done in the
case of an exception?

4 In the case of multiple matching catch blocks for a thrown
exception, which one actually catches the exception?

5 How do you get the message associated with an exception?

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



1. What is the difference between an unscoped and a
scoped enum?

An unscoped enum type adds the enum members to the current
namespace.

The members of a scoped enum type are placed in the namespace of
the enum type.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Unscoped vs. scoped enum types
enum Color {

RED, GREEN, BLUE
};

// ...elsewhere in the program...
Color c = BLUE;

enum class Color {
RED, GREEN, BLUE

};

// ...elsewhere in the program...
Color c = Color::BLUE;

Scoped enumerations are generally preferred because they do not
“pollute” the namespace they’re in.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



2. Why do we use exceptions?

Exceptions help us separate

• where in the program error conditions might occur, from
• where in the program it makes sense to handle the error
conditions

By using exceptions, we can write functions with the attitude that
they will succeed.

If an error condition arises, we can throw an exception.

Exceptions allow us to only handle error conditions in the specific
points in the program where we are prepared to deal with them, and
not clutter the rest of the program with complicated and
hard-to-test error handling paths.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Error handling without exceptions

// Read an integer, then read that many double values
// and add them to the given vector
bool read_input(std::istream &in, std::vector<double> &v) {

int n;
if (!(in >> n)) { return false; }
for (int i = 0; i < n; i++) {

double val;
if (!(in >> val)) { return false; }
v.push_back(val);

}
return true;

}

The caller, the caller’s caller, etc. now need to be concerned
whether this function returned true or false.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Error handling with exceptions
void read_input(std::istream &in, std::vector<double> &v) {

int n;
if (!(in >> n))

throw std::runtime_error("failed to read num elts");
for (int i = 0; i < n; i++) {

double val;
if (!(in >> val))

throw std::runtime_error("failed to read value");
v.push_back(val);

}
}

The called can just assume that either the function will either
succeed completely, or will throw an exception.

It is no longer the caller’s responsibility to handle the possibility of
failure. (Unless the caller wants to handle a failure.)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Using the read_input function

// without exceptions
std::vector<double> data_vec;
if (!read_data(in, data_vec)) {

// What are we supposed to do if the data can't be read
// successfully? This might not be a good place to
// report an error to the user.

}

// with exceptions
std::vector<double> data_vec;
read_data(in, data_vec);
// If we get here, we know the data was read successfully!
// If an exception was thrown, it is our CALLER's problem.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



3. What keyword is used to generate an exception? What
keyword indicates that the block of code may generate an
exception? What keyword indicates what should be done
in the case of an exception?

// generate an exception
throw exception_object;

// handle an exception
try {

// ... this is code that might throw an exception ...
} catch (exception_type &ex) {

// ... handle the possibility that an exception_type
// exception was thrown ...
//

}

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



4. In the case of multiple matching catch blocks for a
thrown exception, which one actually catches the
exception?

The catch clauses of a try are checked in order. The first one that
matches the type of the thrown exception is the one that is
executed.

So, you should order your catch clauses in the order from
most-specific (derived exception classes) to most-general (base
execption classes.)

If y our program defines custom exception t ypes, it’s a good idea to
have them inherit from one of the “standard” exception classes
(e.g., std::runtime_error.)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



5. How do you get the message associated with an
exception?

The standard exception classes (derived from std::exception)
have a virtual member function called what() which returns a
std::string.

This string is a text message describing the reason for the exception.

The constructors for the standard exception classes eccept a string
value to set this message. E.g.

throw std::runtime_error("Couldn't open input file");

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 35

• Practice throwing and catching exceptions
• Breakout rooms 1–10 are social
• Use Slack to let us know if you have any questions!

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Day 36 recap questions

1 Why use iterators?
2 What are the bare minimum operators that need to be

overloaded by an iterator?
3 When won’t a simple pointer correctly iterate through a

collection?
4 Given a container class, how/where should its iterator class be

specified?
5 In addition to defining the iterator class, what else should the

container do to support iterators?
6 What might go wrong if we don’t also define a

const_iterator for a container?

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



1. Why use iterators?

When implementing a collection class (a class whose instances are
intended to store a collection of data values), implementing iterators
provides a uniform way to access the data values in the collection.

Advantages:

• User of the container accesses its data using the same
techniques as other container types

• . . . regardless of the underlying data structure
• Container works with STL algorithms and other generic
functions designed to work with containers

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



2. What are the bare minimum operators that need to be
overloaded by an iterator?

At a mininum:

• * (dereference)
• ++ (advance)
• == and != (compare iterators)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



3. When won’t a simple pointer correctly iterate through a
collection?

A pointer type works as an iterator only if the underlying storage for
the values in the collection is an array.

If the collection uses a different data structure (such as a linked
list), the member where elements are stored isn’t guaranteed to be
contiguous.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



4. Given a container class, how/where should its iterator
class be specified?

The iterator and const_iterator types for the collection must
be members of the collection.

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Example of defining iterator types
class MyCollection {
public:

class iterator {
// ... members of iterator ...

};

class const_iterator {
// ... members of const_iterator ...

};

iterator begin() { return /* begin iterator */ }
iterator end() { return /* end iterator */ }

const_iterator begin() const { return /* begin iterator */ }
const_iterator end() const { return /* end iterator */ }

// ...
601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



What an iterator type could look like

// Assume that EltType is the
// element type of the collection
class iterator {
public:

// ...constructor(s), destructor...

EltType& operator*();
iterator& operator++();
bool operator!=(const iterator &rhs) const;
bool operator==(const iterator &rhs) const;

private:
// ...member variables ...

};

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



5. In addition to defining the iterator class, what else
should the container do to support iterators?

The container should have appropriate begin() and end() member
functions (as shown on previous slide.)

The begin() function returns an iterator (or const_iterator)
positioned at the first element of the collection.

The end() function returns an iterator (or const_iterator)
positioned just past the last element of the collection. (I.e.,
advancing an iterator which is positioned at the last element yields
an iterator which is equal to the end iterator.)

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



6. What might go wrong if we don’t also define a
const_iterator for a container?

Since normal iterators can modify data values in the collection,
they can’t be used on a const collection object.

This is a problem if the collection is passed by const reference:

void analyze_data(const MyCollection &coll) {
// this won't work because coll is const
for (MyCollection::iterator i = coll.begin();

i != coll.end();
++i) {

// ...
}

}

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Exercise 36

• Implement an iterator type for the MyList class
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions!

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 21 (July 19nd)


