
601.220 Intermediate Programming

Summer 2024, Meeting 20 (July 17th)

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Today’s agenda

• Review exercises 31 and 32
• Day 33 recap questions
• Day 34 recap questions
• Final project introduction
• Exercise 33

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Reminders/Announcements

• HW7 is due tomorrow (Thursday, July 18st)
• Final project teams should be final at this point, and you
should have access to your team repository
• Let us know ASAP if there are any issues

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 31 review
Converting int_set to (generic) my_set<T>: this is essentially just
a syntactic change.

Put template<typename T> before the class definition (in
my_set.h) and member function implementations (in
my_set.inc.)

Substitutions:

• int_node → my_node<T>
• int_node → my_node (names of constructor and destructor
functions)
• int_set → my_set<T>
• int_set → my_set (names of constructor and destructor
functions)
• int → T (except for size field and get_size() member
function)

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 31 review
The output stream insertion operator needs to use its own type
parameter (since it’s not a member of my_set<T>)

// in my_set.h
template<typename U>
friend std::ostream& operator<<(std::ostream& os,

const my_set<U> &s);

// in my_set.inc
template<typename U>
friend std::ostream& operator<<(std::ostream& os,

const my_set<U> &s) {
my_node<U> *n = s.head;
// ...code to print member values...
return os;

}

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 31 review
Assignment operator

// in my_set.h
my_set<T>& operator=(const my_set<T>& other);

// in my_set.inc
template<typename T>
my_set<T>& my_set<T>::operator=(const my_set<T>& other) {

if (this != &other) {
my_node<T> *n = other.head;
while (n != nullptr) {

add(n->get_data();
n = n->get_next();

}
}
return *this;

}

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 32 review

In B’s constructor:

a = 27;

The member variable a is private in the base class A, so B’s
constructor can’t access it directly.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 32 review

In main1.cpp:

aobj.d = 17.5; // d is protected in A, main cannot
// access directly

aptr->setb(15); // even though aptr is pointing to an object
// of type B, its type is A* (pointer to A)
// and A does not have a setb member function

bobj = a5; // B's assignment operator requires an
// argument of type const B& (reference to
// const B), but a5's type is A

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 32 review
After making the show member function virtual in A (note that
additional output is generated):
--- orig_output.txt 2022-07-12 09:53:44.533488783 -0400
+++ revised_output.txt 2022-07-12 09:53:44.533488783 -0400
@@ -6,10 +6,14 @@

A is 3
test A

+B is 2
+test B

non-virtual display A
A is 3
test A

+B is 2
+test B

A obj killed
A is 10

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 32 review

A’s show() member function:
virtual void show() { std::cout << "A is " << a << std::endl; test(); }

A’s display() member function:
void show() { A::show(); std::cout << "B is " << b << std::endl; test(); }

The call to show() in A::display() now resolves to B::show()
when called on a B object. B::show() calls A::show() directly,
then prints additional output (“B is _”), then calls test(), which
is a non-virtual member function in A, but resolves to B::test(),
because B also defines a member function of the same name, and
the call is in B::show().

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Day 33 recap questions

1 Explain what object slicing is in C++.
2 What is the override specifier in C++?
3 Explain what function hiding is in C++?
4 In C++, how do you make an abstract class?
5 Can we create an object from an abstract class?

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

1. Explain what object slicing is in C++.

An assignment of a derived class object to a base class object will
“slice off” the fields of the derived class object, because they can’t
be stored in the base class object.

E.g.:

// assume Point3D derives from Point2D
Point2D p1(3.0, 4.0);
Point3D p2(5.0, 6.0, 7.0);

p1 = p2; // only the x and y values of p2 are
// copied to p1

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Value semantics and inheritance

Value semantics (copying and assigning object contents) tends not
to be particularly useful in class hierarchies (where inheritance is
used to define “is-a” relationships between classes.)

It is not uncommon for base and derived classes to prohibit the use
of the copy constructor and assignment operator by making them
private.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

2. What is the override specifier in C++?

The override specified can be used in a derived class to indicate
that a member function is intended to override a member function
in the base class. If the derived class function (marked with
override) does not actually override a base class function, the
compiler reports an error.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Why override is (sometimes) useful

The problem override is designed to solve:

• base class defines a virtual member function
• derived class defines a virtual member function intended to

override the base class function, but it messes up somehow
(e.g., wrong number or type(s) of parameters), so that the
derived class function doesn’t actually override the base class
function

One reason this could happen is because someone changes the
definition of the member function in the base class.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Opinion about override

Virtual member functions in base classes should be pure virtual (i.e.,
abstract.)

If there are any pure virtual functions, then the override specifier
isn’t that essential, because if a derived class doesn’t override all of
the pure virtual member functions in the base class, it won’t be
instantiable.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

3. Explain what function hiding is in C++?

Function hiding occurs when a derived class defines a member
function with the same name as member function(s) in the base
class.

This “hides” the identically-named functions in the base class.

Note that those functions could still be called using the scope
resolution operator (::). E.g.:

Base::foobar(123, 'a'); // if function(s) called "foobar"
// in Base would normally be hidden,
// this would call call
// Base::foobar(int, char)

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

4. In C++, how do you make an abstract class?

A class that has at least one pure virtual member function is an
abstract class.

E.g.:

class Animal {
virtual ~Animal() {}
virtual void vocalize() = 0;

};

Opinion: virtual functions in base classes should always be pure
virtual. The reason is that if derived classes will be overriding the
function to implement varying behavior, then there is probably
nothing useful that the base class can do to define functionality for
the member function.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

5. Can we create an object from an abstract class?

No. Example:
class Animal {
public:

virtual ~Animal() { }
virtual void vocalize() = 0;

};

class Dog : public Animal {
virtual ~Dog() { }
virtual void vocalize() { std::cout << "woof\n"; }

};

// ...

Animal *a = new Animal(); // compile error
Dog *d = new Dog(); // fine

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Final project

Plot mathematical functions, render as an image file.

Example plot input file:
Plot -4.0 -12.0 4.0 12.0 640 480
Function fn1 (- (* x x) 8.0)
Function fn2 (* 9.6 (sin (* x 2.3)))
FillAbove fn1 0.55 31 58 117
FillBetween fn1 fn2 0.12 118 222 108
Color fn2 135 223 57
Color fn1 65 7 113

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Example plot image

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Functions, prefix expressions

All functions are y = expr, where expr is a prefix expression

Expression types:

• x
• pi
• literal floating point value
• (function arguments)

Functions are sin, cos, +, -, *, and /.

arguments is a sequence of 0 or more prefix expressions.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Prefix vs. infix

Prefix expression:
(+ (sin (* 1.33 x)) (* 0.25 (cos (* 6.7 x))))

Equivalent infix expression:

(sin 1.33x) + (0.25(cos 6.7x))

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Expression trees

Expressions can be represented as trees. The leaf nodes (nodes
without children) are x, pi, or numeric literal. Functions are
represented as a function node with child expression trees
representing the function arguments.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Example expression tree

(+ (sin (* 1.33 x)) (* 0.25 (cos (* 6.7 x))))

sin

1.33 x

* cos

6.7 x

*

+

*

0.25

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Evaluating expressions

The Expr base class represents an expression tree node.

It has the following pure virtual member function:

virtual double eval(double x) const = 0;

For each type of expression tree node, you will create a derived class
which overrides the eval function with appropriate behavior.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Rendering the plot image

The Image class is fairly similar to the Image struct type in the
midterm project.

The plot image will start with all pixels set to black, RGB (0, 0, 0).
For each fill directive and function directive, determine which pixel
colors should be changed.

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Exercise 33

• Abstract classes, pure virtual member functions
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 20 (July 17th)

