
601.220 Intermediate Programming

Summer 2024, Meeting 17 (July 10th)

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Today’s agenda

• Review exercises 25 and 26
• Day 27 recap questions
• Exercise 27
• Day 28 recap questions
• Exercise 28

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Reminders/Announcements

• HW5 is due Thursday, July 11th (tomorrow!)
• HW7 is due Thursday, July 18st

• We will have covered everything you need to know for the
CTrie class by Friday

• The TTrie class is a template class: we will cover template
classes and functions on Monday

• Final project team formation: soon

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

abbreviate function loop:

bool last_was_vowel = false;
for (size_t i = 0; i < word.size(); i++) {

bool cur_is_vowel = is_vowel(word[i]);
if (cur_is_vowel) {

if (!last_was_vowel) { result += "'"; }
} else {

result += word[i];
}
last_was_vowel = cur_is_vowel;

}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

main function, opening input and output files:

ifstream in(argv[1]);
if (!in.is_open()) {

cerr << "Couldn't open input file " << argv[1] << "\n";
return 1;

}

ofstream out(argv[2]);
if (!out.is_open()) {

cerr << "Couldn't open output file " << argv[2] << "\n";
return 1;

}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

main function main loop:

string line;
while (getline(in, line)) {

stringstream line_in(line);
string word;
while (line_in >> word) {

out << abbreviate(word) << " ";
}
out << "\n";

}

std::getline is useful for programs which process input one line
at a time.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

classify program body of loop, variables:

double fpval;
int ival;
string extra;
bool is_ival = false, is_fpval = false;

Goal of loop body is tok classify one token.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

Check whether token is an integer value:

stringstream as_i(token);
if (as_i >> ival) {

if (!(as_i >> extra)) {
sum_i += ival;
is_ival = true;

}
}

Idea is that when extracting an integer, there should not be any
input “left over”.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

Determine whether token is a floating point value:

if (!is_ival) {
stringstream as_fp(token);
if (as_fp >> fpval) {

sum_fp += fpval;
is_fpval = true;

}
}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

Handle other tokens:

if (!is_ival && !is_fpval) {
ntok++;
ntok_c += token.size();

}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

letter_freq program, initialize vector of Buckets:

vector<Bucket> buckets;
for (int i = 0; i < 26; i++) {

Bucket b;
b.letter = 'a' + i;
b.count = 0;
buckets.push_back(b);

}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review
letter_freq program, open input file, read characters, classify
them:

ifstream in(argv[1]);
if (!in.is_open()) {

cerr << "Couldn't open input file " << argv[1] << "\n";
return 1;

}

char c;
while (in.get(c)) {

c = tolower(c);
if (isalpha(c)) {

buckets[c - 'a'].count++;
}

}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

letter_freq program, bucket comparision function:

// we want Buckets with a higher count to compare as "less"
// (so that the overall ordering is from most frequent
// to least frequent)
bool compare_buckets(const Bucket &left, const Bucket &right) {

if (left.count > right.count) { return true; }
if (left.count < right.count) { return false; }
return left.letter < right.letter;

}

Sorting the vector of Buckets:

sort(buckets.begin(), buckets.end(), compare_buckets);

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 25 review

letter_freq program, printing letter frequencies:

for (vector<Bucket>::const_iterator i = buckets.cbegin();
i != buckets.cend();
++i) {

if (i->count > 0) {
cout << i->letter << ": " << i->count << "\n";

}
}

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 26 review

void make_cumulative(std::vector<double> &dist) {
for (std::vector<double>::iterator i = dist.begin() + 1;

i != dist.end();
++i) {

*i += *(i - 1);
}

}

Note: vectors have random-access iterators, so “pointer arithmetic”
on iterator values is possible.

Fun fact: in most STL implementations, vector iterators are
pointers.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 26 review

naive_find_last_iterator function:

std::vector<double>::const_iterator best = begin, i = begin;
while (i != end && *i <= v) {

best = i;
++i;

}
return best;

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 26 review

fast_find_last_iterator function:

size_t n = end - begin;
if (n == 1) { return begin; }

std::vector<double>::const_iterator mid = begin + n/2;
if (*mid > v) {

return fast_find_last_iterator(begin, mid, v);
} else {

return fast_find_last_iterator(mid, end, v);
}

Note: this is slightly different than the standard recursive binary
search, because we do not eliminate the middle element from
consideration in the recursive case.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Day 27 recap questions

1 What is object-oriented programming?
2 What is the difference between a public and a private

field/member function?
3 Do class fields and member functions default to public or

private?
4 Can we define member functions in a struct in C? How does

C++ handle structs? Can we do that in C++?
5 What is a default constructor?
6 Why is using an initializer list in a class constructor a better

choice than not using one?

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



1. What is object-oriented programming?

An object is an instance of a class (or struct) type. The class or
struct type can have member variables and member functions.

Member variables (a.k.a. fields): define the data contained in an
object.

Member functions (a.k.a. methods): define the behavior of an
object.

In an object-oriented program, computations are done by calling
member functions on objects.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



2. What is the difference between a public and a private
field/member function?

Public member: can be directly accessed from code outside the
member functions of the class.

Private member: can only be directly accessed from member
functions of the class.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



General rules for member visibility

General rules:

• member variables (fields) should be private
• member functinos to be used by the program as a whole should

be public (these are sometimes called “API functions”)
• member functions that are only needed internally (helper
functions for the class) should be private

The idea that internal implementatino details (fields, helper
functions) are private is known as encapsulation.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



3. Do class fields and member functions default to public
or private?

For class types: default is private

For struct types: default is public

Otherwise, there is no difference between class types and struct
tyypes.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



4. Can we define member functions in a struct in C? How
does C++ handle structs? Can we do that in C++?

In C, a struct type cannot have member functions.

In C++, a struct type can have member functions.

The only difference between C++ struct types and class types is
that the members of struct types are public by default, and
members of class types are private by default.

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



5. What is a default constructor?
A default constructor is a constructor which requires no arguments.
In is invoked to initialize an object if no other constructor is invoked.
Like all constructors, its main job is to initialize the fields of the
object being created.

Assume that Foo is a class:

Foo f; // default constructor is called to initialize
// fields of f

Foo arr[10]; // default constructor is called on each
// element of arr

Foo *p = new Foo[5]; // default constructor is called on
// each element of the dynamically
// allocated array

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



6. Why is using an initializer list in a class constructor a
better choice than not using one?

It avoids an initialization of a field by its default constructor,
followed by an assignment to change the value of the field.

struct Foo {
std::string s;
Foo();

};

Foo::Foo() // best approach
: s("initial value for s")
{ }

Foo::Foo() // not as good
{ s = "initial value for s"; }

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 27

• Practice working with a class (grade_list) and member
variables and functions

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions!

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Day 28 recap questions

1 What is a non-default (or “alternative”) constructor?
2 If we define a non-default constructor, will C++ generate an

implicitly defined default constructor?
3 When do we use the this keyword?
4 What is a destructor?
5 A destructor will automatically release memories that are

allocated in the constructor- true or false?

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



1. What is a non-default (or “alternative”) constructor?

A non-default constructor has one or more parameters. Usually,
these are used to initialize the field(s) of the object being initialized.

Example:

class Point {
private:

double x, y;
public:

Point() : x(0.0), y(0.0) { } // default constructor
Point(double x, double y) // non-default constructor

: x(x), y(y) { }
// ... other member functions ...

};

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



2. If we define a non-default constructor, will C++
generate an implicitly defined default constructor?

No. For example:

class Point {
private:

double x, y;
public:

Point(double x, double y)
: x(x), y(y) { }

// ... other member functions ...
};

// ...elsewhere...

Point p; // will not compile

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



3. When do we use the this keyword?
The this keyword us useful for explicitly referring to the object a
member function is called on, sometimes called the “receiver”
object. It is a pointer to the receiver object.

Among other uses, this can be useful for disambiguating a member
variable that has the same name as a parameter. Example:

class Point {
private:

double x, y;
public:

// ...
void set_x(double x) { this->x = x; }
// ...

};

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



4. What is a destructor?

A class (or struct) type’s destructor member function is called
automatically when an object’s lifetime ends. It’s purpose is to
deallocate any dynamic resources associated with the object.

Examples of dynamic resources:

• dynamically allocated memory
• file resources not automatcially closed by a destructor

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Destructor example

class CBuf {
private:

char *buf;
size_t size;

public:
CBuf(size_t sz) : buf(new char[sz]), size(sz) { }
~CBuf() { delete[] buf; }

// ...other member functions...
};

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



5. A destructor will automatically release memories that
are allocated in the constructor- true or false?

False.

The destructor must explicitly deallocate dynamically-allocated
memory using either delete or delete[] (depending on whether
or not the memory being deallocated is an array.)

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Exercise 28

• grade_list again, but this time storing grades in a
dynamically allocated array

• This is very much like how std::vector works!
• Breakout rooms 1–10 are “social”
• Use Slack to ask us if you have questions!

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 17 (July 10th)


