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Today’s agenda

• Day 23 recap questions
• Exercise 23
• Day 24 recap questions
• Exercise 24
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Reminders/Announcements

• HW5 is due Thursday, July 11th
• We will have covered nearly everything you will need to know by

the end of class today
• File I/O will be covered on Monday

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Day 23 recap questions

1 What is a template in C++?
2 What is the standard template library (STL)?
3 How do you iterate over a std::vector and print out its

elements?
4 What is an iterator in C++?
5 How do you add an element to an existing vector.
6 (Bonus) What is the output of the program below?
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1. What is a template in C++?

A template allows a struct type, a class type, or a function to be
instantiated with a variety of data types or combinations of data
types.

In C, a linked list node type must hard-code the payload data type,
e.g.:

// this node type is only useful for linked lists of
// char values
struct Node {

char data;
struct Node *next;

};
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C++ template linked list node type

In C++, the payload data type can be specified with a “type
parameter”:

template<typename E>
struct Node {

E data;
struct Node<E> *next;

};

Now we can have Node<char>, Node<int>, Node<std::string>,
etc.
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2. What is the standard template library (STL)?
The STL is a collection of useful template functions and classes provided
by the standard C++ library.

Examples: std::vector, std::list, std::map, std::sort, many
others.

Observation: to a large degree, effective programming means finding
efficient and elegant ways to store, access, and do computations on data.

It is challenging to do these things in C because the only “built in” feature
for aggregating data is the array, and the “built in” support for doing
computations is very limited (e.g., qsort.)

In C++, the STL provides

1 very powerful ways to organize and access data, and
2 powerful tools for doing computations on data
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3. How do you iterate over a std::vector and print out
its elements?, 4. What is an iterator in C++?

Traversing a collection of values in an STL container (such as a
vector) is done using an iterator. An iterator is a generalization of
a pointer, and is used in a way that is very similar to the way
pointers are used.

In fact, a pointer to an array element is an iterator, because it
supports all of the operations required of iterators.
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Iterator example

std::vector<int> myvec;

// assume some values are added to myvec

for (std::vector<int>::const_iterator i = myvec.cbegin();
i != myvec.cend();
++i) {

int value = *i;
std::cout << value << " ";

}
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5. How do you add an element to an existing vector?

Use the push_back member function.

std::vector<int> myvec;
assert(myvec.size() == 0); // myvec is initially empty

myvec.push_back(1);
myvec.push_back(2);
myvec.push_back(3);

assert(myvec.size() == 3); // 3 elements were added
assert(myvec[0] == 1);
assert(myvec[1] == 2);
assert(myvec[2] == 3);
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6. (Bonus) What is the output of the program below?
#include <iostream>
#include <vector>

using std::cin; using std::cout; using std::endl;
using std::vector;

int main() {
vector<double> numbers;
for (int i = 1; i <= 10; i++) {

if (i % 2 == 1)
numbers.insert(numbers.begin(), i / 2.0);

else
numbers.push_back(i * 2.0);

}

vector<double>::iterator it = numbers.begin();
cout << "first == " << *it << endl;
cout << "middle1 == " << *(it + 4) << endl;
cout << "middle2 == " << *(it + 5) << endl;
cout << "last == " << *(it + 9) << endl;

}
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Exercise 23

• Practice basic input and output using iostreams
• Practice using std::vector
• Recursion (merge sort)
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Day 24 recap questions

1 What is a map in C++ STL? What is the difference between
pair and tuple?

2 How do you return multiple values in C++?
3 Name some useful templated data containers provided by STL.
4 Name some useful algorithms provided by <algorithm>.
5 What’s the difference between an iterator and a

const_iterator?
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1. What is a map in C++ STL?

std::map is a “dictionary” data type.

A map has two type parameters, the key type and the value type.

A map instance is a collection of pairs (k, v) where k is a value
belonging to the key type, and v is a value belonging to the value
type.

Duplicate keys are not allowed, so if a pair (k, v) exists in the map,
no other pair in the map can have k as its key value.
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Maps are very useful!
Maps have tons of uses. For example, let’s say in HW5 you have the
data types Name and PhoneNumberCollection.
struct Name {

std::string first_name;
std::string last_name;

};

// Name must be comparable using <
bool operator<(const Name &left, const Name &right) {

// return true if left < right, false otherwise
}

// PhoneNumberCollection: assume this is either a struct type,
// or a typedef for some kind of collection

A phone database is a map of Name to PhoneNumberCollection:

std::map<Name, PhoneNumberCollection> phone_db;
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Using the phone database

std::map<Name, PhoneNumberCollection> phone_db;
// assume that data has been added

Name n = { "Neville", "Longbottom" };

std::map<Name, PhoneNumberCollection>::iterator i =
phone_db.find(n);

if (i != phone_db.end()) {
// an entry for this Name exists in the map
PhoneNumberCollection &ph_nums = i->second;

// ...access ph_nums to get the phone numbers...
}
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Adding an entry to a map

std::map<Name, PhoneNumberCollection> phone_db;

Name n = { "Hermione", "Granger" };

// assume Name n doesn't exist in the map yet;
// using the subscript operator will add a new pair
// with n as the key and a newly-initialized
// PhoneNumberCollection
PhoneNumberCollection &ph_nums = phone_db[n];

// ...access ph_nums to add phone numbers...
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Maps are fast!

Finding, adding, or removing a map entry requrires O(log N) time,
where N is the number of elements in the map.

Log functions grow very slowly, so map lookups are efficient even
when the map has a very large number of key/value pairs.
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Map keys are sorted

When you traverse the pairs in a map using an iterator, you will
access the keys in sorted order from least to greatest. This is a
consequence of the underlying data structure, which is a balanced
binary search tree.
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1. What is the difference between pair and tuple? 2.
How do you return multiple values in C++?

The std::pair and std::tuple types can be used to allow a
function to return multiple values. (Although this is not their only
use.)

An instance of std::pair can hold exactly two values (first and
second). An instance of std::tuple can hold multiple values.

Note that the std::get function must be used to access the values
in a tuple, parametized with the index indicating which value to
access (0 for first value, 1 for second value, etc.)
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Pair and tuple examples

// fruit.cpp:
#include <iostream>
#include <utility> // for std::pair
#include <tuple>

std::pair<std::string, int> get_fruit() {
return std::pair<std::string, int>("oranges", 8);

}

std::tuple<std::string, int> get_fruit2() {
return std::tuple<std::string, int>("lemons", 5);

}

int main() {
std::pair<std::string, int> fruit1 = get_fruit();
std::tuple<std::string, int> fruit2 = get_fruit2();
std::cout << fruit1.first << "," << fruit1.second << "\n";
std::cout << std::get<0>(fruit2) << "," << std::get<1>(fruit2) << "\n";

}

$ g++ -g -std=c++14 -Wall -Wextra -pedantic fruit.cpp
$ ./a.out
oranges,8
lemons,5
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3. Name some useful templated data containers provided
by STL.

std::vector: random access sequence (like an array, but can
grow)

std::list: sequence with sequential access (like a linked list), but
O(1) insertions and removals using an iterator

std::map: dictionary collection, maps a set of keys to
corresponding values

std::set: sorted set of values (no duplicates allowed)

std::deque: first-in first-out sequence (a “queue”)
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4. Name some useful algorithms provided by
<algorithm>.

std::sort: sort values in any random-access sequence (array or
vector)

std::find: sequential search of a collection
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5. What’s the difference between an iterator and a
const_iterator?

An iterator allows the values in the underlying collection to be
modified.

A const_iterator only allows the values in the underlying
collection to be accessed, not modified.
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iterator vs. const_iterator

Example:
// iter_vs_const_iter.cpp:
#include <vector>

int main() {
std::vector<int> v = {1, 2, 3};
std::vector<int>::iterator i = v.begin();
*i = 42; // this is fine
std::vector<int>::const_iterator j = v.cbegin();
*j = 42; // compiler error

}

$ g++ -g -std=c++14 -Wall -Wextra -pedantic iter_vs_const_iter.cpp
iter_vs_const_iter.cpp: In function ‘int main()’:
iter_vs_const_iter.cpp:8:6: error: assignment of read-only location ‘j.__gnu_cxx::__normal_iterator<const int*, std::vector<int> >::operator*()’

8 | *j = 42; // compiler error
| ~~~^~~~
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When to use const_iterator

It’s always a good idea to use const_iterator in any code that is
not intended to modify values in the collection being traversed.

You must use const_iterator when iterating via a const
reference. E.g.:

int compute_sum(const std::vector<int> &v) {
int sum = 0;
for (std::vector<int>::const_iterator i = v.cbegin();

i != v.cend();
++i) {

sum += *i;
}
return sum;

}
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Exercise 24
• Working with strings and maps
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

Hint for frequency count:

std::map<std::string, int> counters;
std::string word;

word = "hello";

// this works regardless of whether or not "hello" previously was
// present as a key
counters[word]++;

When a new key is added to a map by the subscript operator, the second
value in the new pair will get the default value for its type, which is 0 for
numeric types (including int).
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Notes
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