
601.220 Intermediate Programming

Summer 2024, Meeting 15 (July 5th)

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Today’s agenda

• Day 23 recap questions
• Exercise 23
• Day 24 recap questions
• Exercise 24

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Reminders/Announcements

• HW5 is due Thursday, July 11th
• We will have covered nearly everything you will need to know by

the end of class today
• File I/O will be covered on Monday

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Day 23 recap questions

1 What is a template in C++?
2 What is the standard template library (STL)?
3 How do you iterate over a std::vector and print out its

elements?
4 What is an iterator in C++?
5 How do you add an element to an existing vector.
6 (Bonus) What is the output of the program below?

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



1. What is a template in C++?

A template allows a struct type, a class type, or a function to be
instantiated with a variety of data types or combinations of data
types.

In C, a linked list node type must hard-code the payload data type,
e.g.:

// this node type is only useful for linked lists of
// char values
struct Node {

char data;
struct Node *next;

};

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



C++ template linked list node type

In C++, the payload data type can be specified with a “type
parameter”:

template<typename E>
struct Node {

E data;
struct Node<E> *next;

};

Now we can have Node<char>, Node<int>, Node<std::string>,
etc.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



2. What is the standard template library (STL)?
The STL is a collection of useful template functions and classes provided
by the standard C++ library.

Examples: std::vector, std::list, std::map, std::sort, many
others.

Observation: to a large degree, effective programming means finding
efficient and elegant ways to store, access, and do computations on data.

It is challenging to do these things in C because the only “built in” feature
for aggregating data is the array, and the “built in” support for doing
computations is very limited (e.g., qsort.)

In C++, the STL provides

1 very powerful ways to organize and access data, and
2 powerful tools for doing computations on data

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



3. How do you iterate over a std::vector and print out
its elements?, 4. What is an iterator in C++?

Traversing a collection of values in an STL container (such as a
vector) is done using an iterator. An iterator is a generalization of
a pointer, and is used in a way that is very similar to the way
pointers are used.

In fact, a pointer to an array element is an iterator, because it
supports all of the operations required of iterators.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Iterator example

std::vector<int> myvec;

// assume some values are added to myvec

for (std::vector<int>::const_iterator i = myvec.cbegin();
i != myvec.cend();
++i) {

int value = *i;
std::cout << value << " ";

}

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



5. How do you add an element to an existing vector?

Use the push_back member function.

std::vector<int> myvec;
assert(myvec.size() == 0); // myvec is initially empty

myvec.push_back(1);
myvec.push_back(2);
myvec.push_back(3);

assert(myvec.size() == 3); // 3 elements were added
assert(myvec[0] == 1);
assert(myvec[1] == 2);
assert(myvec[2] == 3);

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



6. (Bonus) What is the output of the program below?
#include <iostream>
#include <vector>

using std::cin; using std::cout; using std::endl;
using std::vector;

int main() {
vector<double> numbers;
for (int i = 1; i <= 10; i++) {

if (i % 2 == 1)
numbers.insert(numbers.begin(), i / 2.0);

else
numbers.push_back(i * 2.0);

}

vector<double>::iterator it = numbers.begin();
cout << "first == " << *it << endl;
cout << "middle1 == " << *(it + 4) << endl;
cout << "middle2 == " << *(it + 5) << endl;
cout << "last == " << *(it + 9) << endl;

}

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Exercise 23

• Practice basic input and output using iostreams
• Practice using std::vector
• Recursion (merge sort)
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Day 24 recap questions

1 What is a map in C++ STL? What is the difference between
pair and tuple?

2 How do you return multiple values in C++?
3 Name some useful templated data containers provided by STL.
4 Name some useful algorithms provided by <algorithm>.
5 What’s the difference between an iterator and a

const_iterator?

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



1. What is a map in C++ STL?

std::map is a “dictionary” data type.

A map has two type parameters, the key type and the value type.

A map instance is a collection of pairs (k, v) where k is a value
belonging to the key type, and v is a value belonging to the value
type.

Duplicate keys are not allowed, so if a pair (k, v) exists in the map,
no other pair in the map can have k as its key value.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Maps are very useful!
Maps have tons of uses. For example, let’s say in HW5 you have the
data types Name and PhoneNumberCollection.
struct Name {

std::string first_name;
std::string last_name;

};

// Name must be comparable using <
bool operator<(const Name &left, const Name &right) {

// return true if left < right, false otherwise
}

// PhoneNumberCollection: assume this is either a struct type,
// or a typedef for some kind of collection

A phone database is a map of Name to PhoneNumberCollection:

std::map<Name, PhoneNumberCollection> phone_db;

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Using the phone database

std::map<Name, PhoneNumberCollection> phone_db;
// assume that data has been added

Name n = { "Neville", "Longbottom" };

std::map<Name, PhoneNumberCollection>::iterator i =
phone_db.find(n);

if (i != phone_db.end()) {
// an entry for this Name exists in the map
PhoneNumberCollection &ph_nums = i->second;

// ...access ph_nums to get the phone numbers...
}

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Adding an entry to a map

std::map<Name, PhoneNumberCollection> phone_db;

Name n = { "Hermione", "Granger" };

// assume Name n doesn't exist in the map yet;
// using the subscript operator will add a new pair
// with n as the key and a newly-initialized
// PhoneNumberCollection
PhoneNumberCollection &ph_nums = phone_db[n];

// ...access ph_nums to add phone numbers...

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Maps are fast!

Finding, adding, or removing a map entry requrires O(log N) time,
where N is the number of elements in the map.

Log functions grow very slowly, so map lookups are efficient even
when the map has a very large number of key/value pairs.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Map keys are sorted

When you traverse the pairs in a map using an iterator, you will
access the keys in sorted order from least to greatest. This is a
consequence of the underlying data structure, which is a balanced
binary search tree.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



1. What is the difference between pair and tuple? 2.
How do you return multiple values in C++?

The std::pair and std::tuple types can be used to allow a
function to return multiple values. (Although this is not their only
use.)

An instance of std::pair can hold exactly two values (first and
second). An instance of std::tuple can hold multiple values.

Note that the std::get function must be used to access the values
in a tuple, parametized with the index indicating which value to
access (0 for first value, 1 for second value, etc.)

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Pair and tuple examples

// fruit.cpp:
#include <iostream>
#include <utility> // for std::pair
#include <tuple>

std::pair<std::string, int> get_fruit() {
return std::pair<std::string, int>("oranges", 8);

}

std::tuple<std::string, int> get_fruit2() {
return std::tuple<std::string, int>("lemons", 5);

}

int main() {
std::pair<std::string, int> fruit1 = get_fruit();
std::tuple<std::string, int> fruit2 = get_fruit2();
std::cout << fruit1.first << "," << fruit1.second << "\n";
std::cout << std::get<0>(fruit2) << "," << std::get<1>(fruit2) << "\n";

}

$ g++ -g -std=c++14 -Wall -Wextra -pedantic fruit.cpp
$ ./a.out
oranges,8
lemons,5

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



3. Name some useful templated data containers provided
by STL.

std::vector: random access sequence (like an array, but can
grow)

std::list: sequence with sequential access (like a linked list), but
O(1) insertions and removals using an iterator

std::map: dictionary collection, maps a set of keys to
corresponding values

std::set: sorted set of values (no duplicates allowed)

std::deque: first-in first-out sequence (a “queue”)

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



4. Name some useful algorithms provided by
<algorithm>.

std::sort: sort values in any random-access sequence (array or
vector)

std::find: sequential search of a collection

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



5. What’s the difference between an iterator and a
const_iterator?

An iterator allows the values in the underlying collection to be
modified.

A const_iterator only allows the values in the underlying
collection to be accessed, not modified.

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



iterator vs. const_iterator

Example:
// iter_vs_const_iter.cpp:
#include <vector>

int main() {
std::vector<int> v = {1, 2, 3};
std::vector<int>::iterator i = v.begin();
*i = 42; // this is fine
std::vector<int>::const_iterator j = v.cbegin();
*j = 42; // compiler error

}

$ g++ -g -std=c++14 -Wall -Wextra -pedantic iter_vs_const_iter.cpp
iter_vs_const_iter.cpp: In function ‘int main()’:
iter_vs_const_iter.cpp:8:6: error: assignment of read-only location ‘j.__gnu_cxx::__normal_iterator<const int*, std::vector<int> >::operator*()’

8 | *j = 42; // compiler error
| ~~~^~~~

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



When to use const_iterator

It’s always a good idea to use const_iterator in any code that is
not intended to modify values in the collection being traversed.

You must use const_iterator when iterating via a const
reference. E.g.:

int compute_sum(const std::vector<int> &v) {
int sum = 0;
for (std::vector<int>::const_iterator i = v.cbegin();

i != v.cend();
++i) {

sum += *i;
}
return sum;

}

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Exercise 24
• Working with strings and maps
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

Hint for frequency count:

std::map<std::string, int> counters;
std::string word;

word = "hello";

// this works regardless of whether or not "hello" previously was
// present as a key
counters[word]++;

When a new key is added to a map by the subscript operator, the second
value in the new pair will get the default value for its type, which is 0 for
numeric types (including int).

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)



Notes

601.220 Intermediate Programming Summer 2024, Meeting 15 (July 5th)


