
601.220 Intermediate Programming

Summer 2024, Meeting 10 (June 24th)

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Today’s agenda

• Exercise 15 review
• “Day 17” material

• Linked lists
• Exercise 17

• “Day 18” material
• More linked lists
• Exercise 18

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Reminders/Announcements

• Update on Midterm project deadline: due Friday, June 28th
due Saturday, June 29th

• An additional day was added to compensate the fact the starter
code was release on Sunday.

• No late days allowed for the midterm project (Please refer to
the homework policy at the syllabus tab on the course website)

• Midterm exam: in class on Wednesday, July 3th

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 2

• Identify the endianness of ugrad machines
• Endianness is the order or sequence in which multi byte words
are stored in memory.

• Little-endian (LE)
• Big-endian (BE)

• Why is it important to know which system is our computer
using?

• Example with base 10 number: 950238851 can be represented
in hexadecimal base as 38 A3 7E 83.

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 2

Example with base 10 number: 950238851 can be represented in
hexadecimal base as 38 A3 7E 83.

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 2
Identify the endianness of ugrad machines
(gdb) break endian.c:21
Breakpoint 1 at 0x1243: file endian.c, line 21.
(gdb) run
[...output omitted...]
Breakpoint 1, main () at endian.c:21
21 printf("%u\n", *p);
(gdb) print/x ((unsigned char *)p)[0]
$1 = 0x83
(gdb) print/x ((unsigned char *)p)[1]
$2 = 0x7e
(gdb) print/x ((unsigned char *)p)[2]
$3 = 0xa3
(gdb) print/x ((unsigned char *)p)[3]
$4 = 0x38

In base-16, 950238851 is 38A37E83. Since we’re seeing the bytes in
order from least to most significant, the ugrad machines are little
endian.

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 3

To negate a two’s complement value:

• Invert all of the bits (the ~ operator is useful for this)
• Add 1

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 3

Note that 0x80000000U is the unsigned int value with only the
most significant bit set to 1. This is the sign bit, and values with
this bit set are negative.

unsigned int magnitude(unsigned int value) {
if ((value & 0x80000000U) == 0U) {

return value; // value is non-negative
}

// value is negative, so invert bits and add 1
value = ~value; // invert bits
value += 1U; // add 1
return value;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 4

Generating a uniformly distributed pseudo-random integer in the
range 0 (inclusive) to max_num (exclusive):

int gen_uniform(int max_num) {
return rand() % max_num;

}

rand() generates integers between 0 and RAND_MAX

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review - part 4

Generating 500 random values in range 0 (inclusive) to max_range
(exclusive) and tallying them in the hist array:

for (int i = 0; i < 500; i++) {
hist[gen_uniform(max_range)]++;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review

Generating normally-distributed integer values in the range 0
(inclusive) to max_range (exclusive):

• Base idea: throw a coin a 1000 times. How many heads would
you expect to obtain?

• Now lets repeat this experiment a thousand times. What is the
distribution of the total number of heads of all thousand
experiments?

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review
Generating normally-distributed integer values in the range 0
(inclusive) to max_range (exclusive):

int normal_rand(int max_num) {
int result = 0;
for (int i = 1; i < max_num; i++) {

if ((rand() & 1) == 1) {
result++;

}
}
return result;

}

This is basically flipping a coin max_num-1 times and counting how
many times it’s heads.

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 15 review

Generating 500 normally-distributed values in the range 0 (inclusive)
to max_range (exclusive) and tallying them in the hist array:

for (int i = 0; i < 500; i++) {
hist[normal_rand(max_range)]++;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Day 17 recap questions

1 Describe the linked list structure by a diagram.
2 Compare arrays and linked lists. Write down their pros and

cons.
3 What is a linked list’s head? How is it different from a node?

Explain.
4 How do you calculate length of a linked list?
5 How do you implement add_after on a singly linked list?

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

1. Describe the linked list structure by a diagram.
struct Node type:

struct Node {
char payload; // payload could be any data type
struct Node *next;

};

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Example linked list
// code creating a linked list
struct Node *head = malloc(sizeof(struct Node));
head->payload = 'A';
head->next = malloc(sizeof(struct Node));
head->next->payload = 'B';
head->next->next = malloc(sizeof(struct Node));
head->next->next->payload = 'C';
head->next->next->next = NULL;

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

A more concise representation

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

2. Compare arrays and linked lists. Write down their pros
and cons.

Arrays:

• Pro: O(1) access to arbitrary element
• Con: O(N) to insert or remove element at arbitrary position
• Pro: better locality (fewer cache misses when iterating)
• Pro: more compact
• Con: fixed size, to reallocate must allocate new array and copy
existing data

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Linked list pros and cons

Linked list:

• Con: O(N) access to arbitrary element
• Pro: O(1) to remove element at arbitrary position
• Con: worse locality (more cache misses when iterating)
• Con: less compact (next pointers require space)
• Pro: can grow incrementally, nodes are allocated one at a time

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

3. What is a linked list’s head? How is it different from a
node? Explain.

Contrast: head pointer vs. head node. The head pointer is a pointer
variable storing a pointer to the first node. The head node is the
first node in the linked list.

Picture:

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

4. How do you calculate length of a linked list?
A loop is required:

struct Node *head = /* points to first node */ ;
int count = 0;

for (struct Node *cur = head; cur != NULL; cur = cur->next) {
count++;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

5. How do you implement add_after on a singly linked
list?

void add_after(struct Node *p, char value) {
struct Node *n = malloc(sizeof(struct Node));
n->payload = value;
n->next = p->next;
p->next = n;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 17

• Basic linked list functions
• Drawing pictures to reason about how linked lists operations
should work is very helpful!

• Note that reverse_print is most easily implemented using
recursion

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Day 18 recap questions

1 How do you implement add_front on a linked list?
2 How do you modify a singly linked list to create a doubly linked

list?
3 How do you make a copy of a singly linked list?
4 Why does add_after takes a struct Node * as input, but

add_front takes struct Node **?
5 What cases should be handled when implementing

remove_front?

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Changing the address of a pointer inside a function

The wrong way of doing it c is a passed by value language!
void func(int *p)
{

p+=1;
printf("Inside func %d\n", *p);

}
int main()
{

int x[5] = {1,2,3,4,5};
int *p = x;
func(p);
printf("outside func %d\n", *p);

return 0;
}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Changing the address of a pointer inside a function

The the right way of doing it

void func(int **p)
{

*p+=1;
printf("Inside func %d\n", **p);

}
int main()
{

int x[5] = {1,2,3,4,5};
int *p = x;
func(&p);
printf("outside func %d\n", *p);

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

4. Why does add_after takes a struct Node * as input,
but add_front takes struct Node **?

Because add_after needs to change which node the head pointer
points to. For example:
struct Node *head = /* linked list containing 'A', 'B', 'C' */ ;
// ...
add_front(&head, 'D');

Before:

After:

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

1. How do you implement add_front on a linked list?

void add_front(struct Node **p_head, char value) {
struct Node *node = malloc(sizeof(struct Node));
node->data = value;
node->next = *p_head;
*p_head = node;

}

Trace:

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

2. How do you modify a singly linked list to create a
doubly linked list?

Have each node store a pointer to the previous node in the list, in
addition to the next node in the list. I.e.:

struct Node {
char payload;
struct Node *prev, *next;

};

Example:

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

3. How do you make a copy of a singly linked list?
One way is to use recursion:

struct Node *copy_list(struct Node *n) {
struct Node *result;
if (n == NULL) {

result = NULL;
} else {

result = malloc(sizeof(struct Node));
result->payload = n->payload;
result->next = copy_list(n->next);

}
return result;

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

5. What cases should be handled when implementing
remove_front?

There should not be any special cases.

void remove_front(struct Node **p_list) {
assert(*p_list != NULL);
struct Node *succ = (*p_list)->next;
free(*p_list); // free original head node
*p_list = succ; // make head pointer point to second node

}

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Exercise 18

• More linked list operations (including ones requiring pointer to
head pointer)

• Again, drawing diagrams is very helpful for reasoning about
linked list operations

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have any questions!

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 10 (June 24th)

