
601.220 Intermediate Programming

Summer 2024, Meeting 9 (June 21th)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Today’s agenda

• Exercises 13 and 14 review
• Midterm project overview
• “Day 15” material

• Number representation, type conversion/casting
• Exercise 15

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Reminders/Announcements

• Midterm project: due Friday, June 28th
• Team repositories for everybody were created last night. Please,

let us know if you don’t see your repo.
• Midterm exam: in class on Wednesday, July 3th

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 13 review

In a struct data type, “struct” is part of the name of the data
type.

E.g.:

struct Stat {
int num_of_goals;
int num_of_assists;
float pass_accuracy;
int min_played;
int num_of_shots;
float shot_accuracy;

};

The data type is “struct Stat”.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 13 review

Common shortcut: use typedef to avoid the need to use “struct”
when referring to the data type. E.g.:

typedef struct {
int num_of_goals;
int num_of_assists;
float pass_accuracy;
int min_played;
int num_of_shots;
float shot_accuracy;

} Stat;

Now “Stat” can be used as the name of the data type. The main
function assumes you have done this for each struct type.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 13 review

Find the player with the latest signing date:

index = 0;
for (int i = 1; i < TEAMSIZE; i++) {

Player *last = &team[index];
Player *p = &team[i];
if (/* p's date is later than last's date */) {

index = i;
}

}

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 13 review

Use valgrind to analyze memory use:
==2049== 24 bytes in 1 blocks are definitely lost in loss record 1 of 3
==2049== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==2049== by 0x109314: main (main.c:10)
==2049==
==2049== 132 bytes in 11 blocks are definitely lost in loss record 2 of 3
==2049== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==2049== by 0x1095A0: create_player (soccer.c:10)
==2049== by 0x10981B: create_team (soccer.c:41)
==2049== by 0x10932B: main (main.c:11)
==2049==
==2049== 240 bytes in 10 blocks are definitely lost in loss record 3 of 3
==2049== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==2049== by 0x10965A: create_player (soccer.c:22)
==2049== by 0x10981B: create_team (soccer.c:41)
==2049== by 0x10932B: main (main.c:11)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 13 review

Freeing memory:

for (int i = 0; i < TEAMSIZE; i++) {
free(team[i].date);
free(team[i].stat);

}

Observation: for each Player instance in the team array, the date
and stat fields are pointers to dynamically allocated instances of
Date and Stat.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 14 review

Converting from string of 0 and 1 digits to a binary integer:

int str_to_int(char msg[], int len) {
int result = 0;

for (int i = 0; i < len; i++) {
int index = len - i - 1;
char c = msg[index];
if (c == '1') {

result |= (1 << i);
}

}

return result;
}

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 14 review

Converting from binary integer to string of 0 and 1 digits:

void int_to_str(int num_encrypted, char msg_encrypted[],
int len) {

for (int i = 0; i < len; i++) {
int bit_pos = (len - i - 1);
char bit =

(num_encrypted & (1 << bit_pos)) == 0 ? '0' : '1';
msg_encrypted[i] = bit;

}
msg_encrypted[len] = 0; // NUL terminator

}

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 14 review

Performing the encryption:

for (int i = 1; i < n; i++) {
num_encrypted ^= (num_encrypted << 1);

}

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Day 15 recap questions

1 What is two’s complement representation?
2 How does representation of integers and floating-point values

differ in C?
3 What is type narrowing?
4 What is type promotion?
5 What is type casting?
6 What is the output of the code segment below?

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

1. What is two’s complement representation?

Two’s complement is used as the representation of signed integers
on all modern computer architectures.

Idea: most significant bit makes a negative contribution to the value
of the integer.

Consider the bit string 10000101:

• As an 8 bit unsigned value: 128 + 4 + 1 = 133
• As an 8 bit signed two’s complement value:

−128 + 4 + 1 = −123

Big advantage of two’s complement representation: addition and
subtraction work the same way for both unsigned and signed values.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Negating a two’s complement value

To invert a two’s complement value, invert all of the bits and add 1.

Why?

A bit string where every bit is 1 has the value −1.

a is an integer, ~a is the “complement” of a (all bits inverted).

For any a, a + ~a = -1 (e.g., 10010110 + 01101001 = 11111111)

Rearranging: -a = ~a + 1

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

2. How does representation of integers and floating-point
values differ in C?

Integer representation: either unsigned or signed two’s complement.

Floating point representation: IEEE 754.

IEEE 754 is essentially base-2 scientific notation. “Normalized”
floating point values have the form ±1.x × 2y

x is the fraction (represented in base 2)

y is the exponent (representeed in base 2, can be positive or
negative)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Limitations of floating point

Arithmetic on floating point values may involve rounding. Results
should generally be considered to be approximate.

Also: some numbers can’t be represented exactly. For example, 0.1
has no exact representation (becomes a “repeating decimal” in the
fraction.)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

3. What is type narrowing?

Type narrowing is converting a value belonging to a “larger”
numeric type to a “smaller” numeric type. E.g., converting a
double value to an int.

Narrowing conversions may lose information.

For example:

float f_val = 3.5;
int i_val = f_val; // narrowing conversion, i_val=3

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

4. What is type promotion?

A type promotion is converting a value belonging to a “smaller”
numeric type to a “larger” numeric type. E.g., converting an int
value to double.

Will generally not lose information, although some promotions (e.g.,
int to float) may lose information in some cases.

For example:

int i_val = 3;
double d_val = i_val; // promotion, d_val=3.0

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

5. What is type casting?

Type casting is an explicit conversion from one type to another.

Can be used to eliminate warnings in some cases:

// Without the cast, there is a warning
// (comparison of signed and unsigned values)
// in the loop condition
size_t len = strlen(str);
for (int i = 0; i < (int) len; i++) {

char c = str[i];
// ...

}

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Other motivations for casts

In addition to avoiding compiler warnings, casts can also be useful
to explicitly indicate where narrowing conversions are happening in
the program.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

6. What is the output of the code segment below?

int n = 32065; // in binary: 111110101000001
float x = 24.79;

printf("int n = %d but (char) n = %c\n", n, (char) n);

printf("float x = %f but (long) x = %ld\n", x, (long) x);

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Midterm project

Image processing: like Photoshop(tm), but a command line program
which

• reads an input image
• applies a transformation
• writes an output image

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

PPM files

All widely-used image formats (PNG, JPEG, etc.) are compressed,
so the data representation is very complicated.

We will use the PPM format, which is uncompressed, and relatively
easy to read and write.

The starter code provides ppm_io.h/ppm_io.c for reading and
writing PPM files.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Images and pixels

An image is a rectangular grid of pixels. Each pixel is a colored dot.
Pixel color is represented as red, green, and blue intensity values in
the range 0–255. An RGB triple can represent (essentially) any
color that can be perceived by the human eye.

Example colors:

• (0, 0, 0): is black
• (255, 255, 255): is white
• (17, 59, 94): the darker shade of blue on this slide
• (26, 89, 142): the lighter shade of blue on this slide

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Pixel data type

typedef struct _pixel {
unsigned char r;
unsigned char g;
unsigned char b;

} Pixel;

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Image data type

typedef struct _image {
Pixel *data; // pointer to array of Pixels
int rows; // number of rows of Pixels
int cols; // number of columns of Pixels

} Image;

Note that:

• The data field points to a dynamically-allocated array of Pixel
elements

• The pixels are stored in row major order: the top row of pixels is first,
then the second row of pixels, etc.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Pixel coordinates

X coordinates: 0 is the left most column.

Y coordinates: 0 is the top row. (Not the bottom row!)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Original image

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Grayscale

Convert each pixel in the input image so that

1 The “intensity” of the pixel is preserved, but
2 The RGB component values are equal to each other

Project description has a formula for doing the converstion.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Grayscale example output

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Binarize

Convert each pixel to either black or white based on comparing its
computed grayscale value to a threshold value.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Binarize example output

(With threshold value set to 127.)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Crop

Select a rectangular region of the input image. The region is
specified as coordinates of top left and bottom right corners of
region.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Crop example output

(With region specified as (200, 200) and (300, 300).)

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Transpose

Output image has the same pixels as input image, but the x/y
coordinates are swapped.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Transpose example output

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Gradient

Convert image to grayscale.

Compute “gradient” grayscale intensity for each pixel in both
horizontal and vertical directions.

Result image grayscale intensity for each pixel is the sum of the
absolute values of the horizontal and vertical gradient values.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Gradient example output

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Seam carving

Rescale an image while avoiding changing the aspect ratio of the
“interesting” parts of the image.

Uses the image gradient to determine where “seams” should be
identified (to guide which parts of the original image should be
removed.)

Details in project description. This will be fairly tricky to implement!

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Seam carving example output

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Viewing images

The image files, particularly the result image files, will be in your
ugrad account. How to view them on your local computer?

Option 1: Preview them in VS Code. If you have VS Code set up to
access your ugrad account, this should work transparently.

Option 2: Use scp to copy them to your local machine.

Option 3: Use X forwarding (ssh -X) and the feh image viewer
program.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Team dynamics

This is a team project.

Team projects work best when team members work together
synchronously. This is known as pair programming.

Recommendation: avoid having overly-specific division of
responsibilities between team members. The best scenario is when

1 All team members know what everyone is working on, and
2 Any team member can contribute to any part of the project

Avoid “critical path” dependencies. I.e., team member 1 can’t make
progress because they are waiting for team member 2 to complete
something.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Using Git for a team project

Everyone on the team should clone the team’s midterm project
repository.

Each team member will use git push and git pull to
synchronize their work with the project repository.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Merges and merge conflicts

Sometimes, before you git push your own work, you will need to
git pull to bring your local repo up to date with your teammates’
work.

Most of the time, git automatically creates a merge commit to
reconcile your work with your teammates’ work. This is possible
when your changes affect different parts of the code than the code
your teammates modified.

However, this could also result in a merge conflict if your changes
conflict with your teammates’ changes.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Resolving a merge conflict

If git tells you a merge conflict occurs, it will add conflict markers
to the affected code to indicate where the conflicts are. (They are
very obvious: look for places where there are <<<< and >>>>.)

You will need to edit the affected files to

1 Remove the conflict markers, and
2 Manually reconcile your changes with your teammates’ changes

When you’re done, and you’ve tested the code, just do git add on
the files were conflicts where found, then git commit.

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Planning your time

As always:

1 Start early (i.e., now)
2 Make steady, incremental progress
3 Work on the simpler image transformations first (the order in

the project description is the recommended order)

Let us know if you have questions!

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

Exercise 15

• Integer representation, random number generation
• Note that Part 3 is optional!
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

601.220 Intermediate Programming Summer 2024, Meeting 9 (June 21th)

