
601.220 Intermediate Programming

Summer 2024, Meeting 7 (June 17nd)

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Today’s agenda

• Exercises 11 and 12 review
• “Day 13” material

• Lifetime/scope, struct types, random number generation
• Exercise 13

• “Day 14” material
• Binary file I/O, bitwise operations
• Exercise 14

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Reminders/Announcements

• HW3 due on Thursday
• Midterm project teams

• If you are not registered on a team today by 6PM, you will be
assigned to a team today

• People who fill out the form shoud have their team repositories
ready. The rest will be available by end of day today.

• Midterm project: overview in class on Friday June 21th, due
Friday, June 28.

• Next week, Wednesday and Friday class will be allocated to
work on the project.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review

pairwise_sum.c: When running the program using valgrind:

valgrind --leak-check=full ./pairwise_sum

A memory leak is reported:
==17736== 16 bytes in 1 blocks are definitely lost in loss record 1 of 1
==17736== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==17736== by 0x10922B: pairwise_sum (pairwise_sum.c:28)
==17736== by 0x109399: main (pairwise_sum.c:57)

valgrind indicates there is a memory leak: the memory is
allocated in

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review
In the code:

int *pairsum2 = pairwise_sum(pairwise_sum(array, 5), 4);
// ...
free(pairsum2);

Issue: pairwise_sum returns a pointer to a dynamically allocated
array, but for the “inner” call, the array is never freed.

Fix:

int *a = pairwise_sum(array, 5);
int *pairsum2 = pairwise_sum(a, 4);
// ...
free(pairsum2);
free(a);

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review

primes.c:

Issue: the set_primes function needs to call realloc if the array
of results needs to be increased in size.

However, realloc can and usually does return a pointer to a new
dynamic array (with a different memory address).

Unless set_primes can modify the list pointer in main, the main
function has no way of knowing the address of the re-allocated array.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review
Sketch showing the problem with the original code:
// pseudo code to explain the problem - Original set_primes function
int set_primes(int *list , int capacity)
{

//Some code
list = realloc(); //This pointer is never returned
//Rest of the code

}
int main()
{

int list[] = malloc(sizeof(int)*10);
int added_primes = set_primes(list, 10);
printf(%d, primes[added_primes];

}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review

Solution: change set_primes so that it takes a pointer to the
list pointer variable in the main function.
// set_primes function: originally
int set_primes(int *list , int capacity)

// updated
int set_primes(int **list , int capacity)

// in main function
int *list = /* initial allocation of array */

// original call to set_primes
int prime_count = set_primes(list , capacity);

// updated
int prime_count = set_primes(&list , capacity);

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review
Sketch showing how having set_primes take a pointer to a pointer
solves the problem:

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 11 review
Changes to set_primes: essentially, everywhere that list was
mentioned, we now want *list so that we are referring (indirectly)
to the list pointer variable in main.

One issue: array subscript operator has higher precedence than the
pointer dereference operator (*)

So, instead of changing

list[idx++] = n;

to

*list[idx++] = n;

it should be

(*list)[idx++] = n;

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review

Declaration of search function:

How it is called:

pos = search(arr1, arr1 + 10, 318);

Declaration:

int *search(int *start, int *end, int searchval);

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review

Useful property when lower bound of search range is inclusive, and
upper bound is exclusive: end - start is the number of elements
in the range. So:

int *search(int *start, int *end, int searchval) {
int num_elts = (int) (end - start);
if (num_elts < 1) {

return NULL; // no elements in range
} else {

// general case: check middle element, if it's equal to
// searchval, success, otherwise continue recursively on
// left or right side of range

}
}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review

// search, general case
int *mid = start + (num_elts/2);
if (*mid == searchval) {

return mid; // success, found the search value
} else if (*mid < searchval) {

// continue recursively in right side of range
} else {

// continue recursively in left side of range
}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review

// in the test code, finding the index of the matching element
pos = search(arr1, arr1 + 10, 318);
assert(pos != NULL);
assert(*pos == 318);
// TODO: compute the index of the matching element
index = pos - arr1; // <-- add this
assert(2 == index);

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
General observation about 2-D arrays: if p is a pointer to an
element, and N is the number of columns in one row, then

p + N

yields a pointer to an element that is in the same column and next
row from the element p points to. Picture:

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
makeCol:
// TODO: declare the unit variable (array of 9 integers, to be returned)
int *unit = malloc(9 * sizeof(int));

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
makeCube:
// TODO: declare the unit variable (array of 9 integers, to be returned
int *unit = malloc(9 * sizeof(int));

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
checkRows:
// TODO: call check on current row and add to variable good
good += check(&table[r][0]);

Observation: elements in a single row are contiguous in memory
(each row of a 2-D array can be treated as a 1-D array).

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
checkCols:
for (int c = 0; c < SIZE; c++) {

// TODO: call makeCol on current column and assign result to column
column = makeCol(&table[0][c]); // <-- get one column of values
good += check(column);
free(column); // <-- free dynamic array

}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review
checkCubes:
// TODO: call makeCube on current cube and assign result to variable cube
cube = makeCube(&table[r][c]); // <-- get 3x3 "cube" of values
good += check(cube);
free(cube); // <-- free dynamic array

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 12 review

main (in sudoku.c): code does not call fclose to close input file:
should modify main function so that infile is guaranteed to be
closed (using fclose) if it is opened successfully.

Makefile: CFLAGS should include the -g option (to enable debug
symbols).

Running valgrind:
valgrind ./main --leak-check=full --show-leak-kinds=all <name of input file>

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Day 13 recap questions

1 What is struct in C?
2 How are the fields of a struct passed into a function - by value

or by reference?
3 What is the size of a struct? What is structure padding in C?
4 What is the difference between lifetime and scope of a variable?
5 What is variable shadowing (i.e. hiding)?
6 What is the output of the below program?

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

1. What is struct in C?
struct introduces a used-defined data type.

Very much like a class in Java or Python, but with only the ability
to include member variables, not member functions.

An instance of a struct is a “bundle” of variables that are packaged
as a single entity.

Example:

struct Point {
int x, y;

};

// ... elsewhere in the program ...
struct Point p = { .x = 2, .y = 3 };

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

2. How are the fields of a struct passed into a function -
by value or by reference?

Instances of a struct type are passed by value. E.g.

struct Point { int x, y; };

void f(struct Point p, int dx) {
p.x += dx;

}

int main(void) {
struct Point q = { .x = 4, .y = 5 };
f(q, -2);
printf("%d,%d\n", q.x, q.y); // prints "4,5"
return 0;

}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

3. What is the size of a struct? What is structure padding
in C?

sizeof(struct Foo) is the sum of the sizes of the fields of struct
Foo, plus the total size of any padding inserted by the compiler to
ensure that fields are correctly aligned.

alignment: the memory address of a variable (including a field
variable in an instance of a struct type) must be a multiple of the
size of the field.

E.g., a 4-byte int variable (or struct field) must have its storage
allocated starting at a machine address that is a multiple of 4.

The compiler will insert padding automatically: you don’t need to
do anything special. sizeof(struct Foo) will always take the
padding into account. Just trust that the compiler will figure out
the right struct layout to use.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

struct padding example
struct Foo {
char a;
int b;
long c;

};

// ...

struct Foo f;
printf("%lu\n", sizeof(f));

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

4. What is the difference between lifetime and scope of a
variable?

Lifetime: the interval from (1) the point in time when a variable is created,
to (2) the point in time when a variable is destroyed. Examples:

• the lifetime of a local variable is the duration of the function call
• the lifetime of a global variable is the duration of the entire program

Scope: the region of the program code in which a variable may be
accessed. Examples:

• the scope of a local variable is from its declaration to the closing “}”
of the block in which it’s defined

• the scope of a global variable is the entire program (assuming that
there is a declaration or definition of the variable in the current block,
or in the enclosing block}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

5. What is variable shadowing (i.e. hiding)?

Shadowing: a variable declaration in a nested scope has the same
name as a variable in an “outer” scope.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Shadowing example

int x;

void foo(int x) {
{
int x = 5;
printf("%d\n", x); // prints "5"

}
printf("%d\n", x); // prints "4"

}

int main(void) {
x = 3;
foo(4);
printf("%d\n", x); // prints "3"
return 0;

}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

6. What is the output of the below program?
#include <stdio.h>
int foo;
void bar() {

int foo = 3;
{

extern int foo;
printf("%d; ", foo);
foo = 2;

}
printf("%d; ", foo);

}
void baz() { printf("%d; ", foo); }
int main() {

{
int foo = 5;
bar();
printf("%d; ", foo);

}
baz();
return 0;

}

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

. vs. ->
To access a member variable of a struct instance directly, use the
“.” operator. To access a member variable of a struct instance
indirectly via a pointer, use the -> operator.

Note that p->x means exactly the same thing as (*p).x. It’s just a
more convenient syntax.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Example of . vs. ->

struct Player { int x; int y; int health; };

struct Player player;

player.x = 42;
player.y = 17;

struct Player *p = &player;
p->health = 100;

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 13

• Working with struct types, including pointers to instances of
struct types

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have any questions!

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Day 14 recap questions

1 How do we read/write binary files in C?
2 What character represents the bitwise XOR operation? How

does it differ from the OR operation?
3 What happens if you apply the bitwise operation on an integer
value? (extra: what if we apply to floats)

4 What is the result of (15 >> 2) || 7?
5 What is the result of (15 >> 2) | 7?

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

1. How do we read/write binary files in C?
Use "rb" or "wb" when calling fopen, and use fread or fwrite to read
binary data value(s).

E.g., read array of 20 int values from a file of binary data:

FILE *in = fopen("input.dat", "rb");
if (in == NULL) { /* handle error */ }
else {

int *arr = malloc(sizeof(int) * 20);
int rc = fread(arr, sizeof(int), 20, in);
if (rc != 20) { /* handle error */ }

}
// arr now points to array of 20 elements read from input file

Warning: this code is not portable across CPU architectures due to byte
ordering. For multi-byte data values some CPUs store least significant byte
first (“little endian”), some CPUs store most significant byte first (“big
endian”)

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Binary data representation
“Binary” means “base 2”.

Digital computers represent all numbers using base-2 rather than
base 10. For example:

42 in base 10: 4 × 101 + 2 × 100

42 in base 2:

1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

= 1 × 32 + 0 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1

42 as a sequence of binary digits (“bits”): 101010

All data values are represented in binary (base-2) at the machine
level. “Bitwise” operators allow you to work directly with binary
values.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

2. What character represents the bitwise XOR operation?
How does it differ from the OR operation?

Bitwise OR: combine two binary values by computing the result of
the OR operation on each pair of binary digits.

Operator: |

Logic: 0|0=0, 0|1=1, 1|0=1, 1|1=1

Bitwise XOR: combine two binary values by computing the result of
the XOR (exclusive or) operation on each pair of binary digits.

Operator: ˆ

Logic: 0ˆ0=0, 0ˆ1=1, 1ˆ0=1, 1ˆ1=0

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Bitwise AND

Bitwise AND: combine two binary values by computing the result of
the AND operation on each pair of binary digits.

Operator: &

Logic: 0&0=0, 0&1=0, 1&0=0, 1&1=1

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

3. What happens if you apply the bitwise operation on an
integer value? (extra: what if we apply to floats)

The two-operand bitwise operators (|, ˆ, &) perform a logical
operation (OR, XOR, AND) on each pair of bits in the two
operands.

The operands must be values belonging to an “integral”
(integer-like) type.

E.g., int, unsigned, long, unsigned long, char, unsigned
char, etc.

Bitwise operations may not be performed on floating point (float
or double) values.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

4. What is the result of (15 >> 2) || 7?

15 in base-2 is 1111

“>>” is the right shift operator, shifting 1111 two bits to the right
yields 0011, which is equal to 3.

Any non-zero integer is considered TRUE, so 3 is true.

If the left operand of || is true, the entire expression is true (and
the right operand is not evaluated.) All logical and relational
operators yield 0 when false and 1 when true.

So, the result of (15 >> 2) || 7 is 1.

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

5. What is the result of (15 >> 2) | 7?

| is the bitwise OR operator

15 in binary is 1111

(15 >> 2) is 0011

7 in binary is 0111

0011
0111
0111 -- bit is 1 where either operand has a 1 bit

which is equal to 7

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Exercise 14

• arrays and strings
• bitwise operations
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have any questions!

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 7 (June 17nd)

