
601.220 Intermediate Programming

Summer 2023, Meeting 5 (June 13th)

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Today’s agenda

• Exercises 7 and 8 review
• “Day 9” material

• Multidimensional arrays, gdb
• Exercise 9

• “Day 10” material
• Pointers
• Exercise 10

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Reminders

• HW1 due Tomorrow
• HW3 due Thursday, June 20nd
• After HW3 submission, you will be working in your first group
project. You will be working in groups of 2 or 3 people.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 7 review

Adding a function declaration (a.k.a. “function prototype”) for the
div function:

float div(float a, float b);

A function declaration makes the compiler aware of the name,
parameter type(s), and return type of a function so that calls to the
function can be checked for correct usage.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 7 review

mult function declaration:

float mult(float a, float b);

mult function definition:

float mult(float a, float b) {
return a * b;

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 7 review

fac declaration:

long fac(int a);

fac definition (observations: 0! = 1, n! = (n − 1)! × n when n > 0):

// Precondition: a >= 0
long fac(int a) {

assert(a >= 0);
if (a == 0) { return 1; }
return fac(a - 1) * a;

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 7 review

bsearch function:

int bsearch(float ra[], int low, int high, float target) {
// base cases
if (low > high) { return -1; }
if (low == high) { return (ra[low] == target) ? low : -1; }
int mid = low + ((high-low)+1) / 2;
if (ra[mid] == target) { return mid; }
// ...recursive cases left as exercise for reader...

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 7 review

bsearch2: The caller of bsearch2 can’t know how many values
were added to the results array because the size parameter is
passed by value.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 8 review
int concat(const char word1[], const char word2[],

char result[], int result_capacity){
int word1_len = strlen(word1);
int word2_len = strlen(word2);
if (word1_len + word2_len + 1 > result_capacity) {

return 1; // not enough room in result array
}
int pos = 0;
for (int i = 0; i < word1_len; i++) {

result[pos] = word1[i];
pos++;

}
for (int i = 0; i < word2_len; i++) {

result[pos] = word2[i];
pos++;

}
result[pos] = 0;
return 0;

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 8 review

string_functions.h:

#ifndef STRING_FUNCTIONS_H
#define STRING_FUNCTIONS_H

int concat(const char word1[], const char word2[],
char result[], int result_capacity);

#endif // STRING_FUNCTIONS_H

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 8 review

string_functions.c:

#include <string.h>
#include "string_functions.h"

int concat(const char word1[], const char word2[],
char result[], int result_capacity){

// ...code omitted...
}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 8 review

run_concat.c:

#include <stdio.h>
#include <string.h>
#include "string_functions.h"

int main() {
// ...code omitted...

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 8 review

Makefile
CC = gcc
CFLAGS = -std=c99 -pedantic -Wall -Wextra

run_concat: run_concat.o string_functions.o
$(CC) -o run_concat run_concat.o string_functions.o

run_concat.o: run_concat.c string_functions.h
$(CC) $(CFLAGS) -c run_concat.c

string_functions.o: string_functions.c string_functions.h
$(CC) $(CFLAGS) -c string_functions.c

clean:
rm -f *.o run_concat

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Day 9 recap questions

1 How do you declare a multi-dimensional array and pass it to a
function?

2 How do you initialize a multi-dimensional array using array
initialization?

3 What is the compile flag needed to compile a program such
that we can debug it using gdb?

4 How do you set a break point using gdb and check the call
stack?

5 Check the gdb cheat sheet and find the command to print the
content of a variable per step, instead of only printing it once
using print.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

1. How do you declare a multi-dimensional array and pass
it to a function?

Declaring a two-dimensional array:

char board[3][3];

Accessing an element:

board[0][2] = 'X';

Note that by convention, the first index is “rows” and the second
index is “columns”.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

2-D array as parameter
void print_board(char board[3][3]) {

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

printf("%c", board[i][j]);
}
printf("\n");

}
}

Note that the first dimension can be omitted, but the other
dimensions are required.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

2. How do you initialize a multi-dimensional array using
array initialization?

Example:

char board[3][3] = {
{'O', 'X', 'X'},
{'X', 'O', 'O'},
{'X', 'X', 'O'},

};

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

3. What is the compile flag needed to compile a program
such that we can debug it using gdb?

The -g option causes the compiler to generate debug information.

Strongly recommended for all Makefiles for C programs:

CFLAGS = -g -std=c99 -pedantic -Wall -Wextra

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

4. How do you set a break point using gdb and check the
call stack?

Set breakpoint at beginning of function:

break main
break bsearch

Set breakpoint at specific source line:

break functions.c:74

Print call stack (all of these are equivalent):

where
backtrace
bt

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

5. Check the gdb cheat sheet and find the command to
print the content of a variable per step, instead of only
printing it once using print.

display

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 9

• Two-dimensional arrays
• Debugging using gdb
• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Day 10 recap questions

1 What is a pointer?
2 If a is an int variable, and p is a variable whose type is

pointer-to-int, how do you make p point to a?
3 If p is a pointer-to-int variable that points to an int variable a,

how can you access the value of a or assign a value to a
without directly referring to a? Show examples of printing the
value of a and modifying the value of a, but without directly
referring to a.

4 When calling scanf, why do you need to put a & symbol in
front of a variable in which you want scanf to store an input
value?

5 Trace the little program below and determine what the output
will be.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

1. What is a pointer?
A pointer represents the address, or in other words, the location of a
variable.

With a pointer to a variable, you can indirectly access the variable,
either to use the value stored in the variable, or to modify the value
stored in the variable.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

2. If a is an int variable, and p is a variable whose type is
pointer-to-int, how do you make p point to a?

int a;
int *p;
p = &a;

& is the “address-of” operator. It gives you a pointer that points to
the variable to which it is applied.

Visual representation:

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

3. If p is a pointer-to-int variable that points to an int
variable a, how can you access the value of a or assign a
value to a without directly referring to a? Show examples
of printing the value of a and modifying the value of a,
but without directly referring to a.

To indirectly access the variable a pointer is pointing to, use the *
operator, known as the dereference operator.

How to think about the derefence operator: if p points to a, then
*p means exactly the same thing as a.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Dereferencing a pointer

// deref.c:
#include <stdio.h>
int main(void) {

int a = 42;
int *p;
p = &a;
printf("*p = %d\n", *p); // get a's value indirectly
*p = 17; // modify a's value indirectly
printf("after assigning to *p, a = %d\n", a);
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic deref.c
$./a.out
*p = 42
after assigning to *p, a = 17

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

4. When calling scanf, why do you need to put a &
symbol in front of a variable in which you want scanf to
store an input value?

By using the address-of operator (&), you are passing a pointer to
the variable in which you want scanf to store the input value.
scanf uses this pointer to indirectly assign to the variable.

This is a very important use of pointers: to allow a function to
indirectly refer to a variable that it can’t refer to directly. This is a
way of emulating pass by reference.

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

5. Trace the little program below and determine what the
output will be.

The program:
int func(float ra[], float x, float *y) {

ra[0] += 10;
x *= 20;
*y += 30;
return 40;

}
int main() {

float a = 1;
float b = 2;
float c[] = {3, 4, 5, 6};
int d;
d = func(c, a, &b);
printf("%.2f, %.2f, %.2f, %d\n", a, b, c[0], d);

}

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

Exercise 10

• Implement a getDate function so that its parameters are
pointers to month, day, and year variables

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions

601.220 Intermediate Programming Summer 2023, Meeting 5 (June 13th)

