
601.220 Intermediate Programming

Summer 2024, Meeting 4 (June 10th)

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Today’s agenda

• Exercises 5 and 6 review
• “Day 7” material

• Function declarations, passing arrays to functions, recursion
• Exercise 7

• “Day 8” material
• Separate compilation, Makefiles, header guards
• Exercise 8

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Reminders

• HW1 due Thursday, June 13th
• HW3: will be posted Wednesday after class

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

• Copying .bashrc and .bash_profile from the public repo
• These are “shell startup scripts”

• Make emacs the default editor
• Add gccc and g+++ aliases for running gcc and g++ with the

recommended compiler options

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

count1.c: iterate backwards over original sequence, build
complement sequence:
for (int i = dna_len - 1; i >= 0; i--) {

char complement = '?';
switch (dna[i]) {
case 'A': complement = 'T'; break;
case 'T': complement = 'A'; break;
case 'C': complement = 'G'; break;
case 'G': complement = 'C'; break;
default: /* bad data */ ; break;
}
rev_comp[rci] = complement;
rci++;

}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

Set NUL terminator at end of complement sequence:

rev_comp[rci] = 0;

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

count2.c: classify characters using <ctype.h> functions:

for (int i = 0; i < text_len; i++) {
char c = text[i];
if (isalpha(c)) { num_alpha++; }
if (isdigit(c)) { num_digits++; }
if (isspace(c)) { num_space++; }

}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

Could also use knowledge of how characters are encoded in ASCII:

for (int i = 0; i < text_len; i++) {
char c = text[i];
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'))

{ num_alpha++; }
if (c >= '0' && c <= '9')

{ num_digits++; }
// ...etc...

}

Using the <ctype.h> functions is simpler, and makes the program
more readable.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

count3.c: initializing array of per-character counts:

int ascii_count[256] = {0};

Note that when an array initializer has fewer initial values than the
array has elements, the remaining elements are initialized to zero.

So, all of the elements of ascii_count are set to 0 initially.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

Tabulating occurrence counts for each character value:

for (int i = 0; i < text_len; i++) {
int c = text[i];
assert(c >= 0);
ascii_count[c]++;

}

Note char values can be negative, but using a negative array index
would result in an invalid access. Hence, the use of assert. It is a
precondition that all of the character values must be non-negative.

Also note that gcc will complain if you try to use a char value as
an array index.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 5 review

Finding most frequent and second most frequent characters:

for (int i = 0; i < 256; i++) {
if (ascii_count[i] > top_freq) {

top_char = (char) i;
top_freq = ascii_count[i];

} else if (ascii_count[i] > next_freq) {
next_char = (char) i;
next_freq = ascii_count[i];

}
}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 6 review

Opening input and output files:
FILE *in = fopen(filename, "r");
if (in == NULL) {

fprintf(stderr, "Could not open '%s' for reading\n", filename);
return 1;

}

FILE *out = fopen("output.txt", "w");
if (out == NULL) {

fprintf(stderr, "Could not open 'output.txt' for writing\n");
return 1;

}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 6 review

Reading principal and APR from input file:

parse = fscanf(in, "%f %f", &p, &r);

This needs to go before main loop starts, and also at end of body of
main loop.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 6 review

Computing accumulated principal (in compound_interest
function):

const float t = 1.0;
if (n > 0) {

return p * pow(1.0 + r/n, n*t);
} else {

return p * exp(r*t);
}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 6 review

Checking for errors after main loop terminates:

if (parse != EOF) {
fprintf(stderr, "Error reading input\n");
return 1;

}
if (ferror(in)) {

fprintf(stderr, "Input error indicator was set\n");
return 1;

}
if (ferror(out)) {

fprintf(stderr, "Output error indicator was set\n");
return 1;

}

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 6 review

Closing input and output files:

fclose(in);
fclose(out);

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Day 7 recap questions

1 How do you get the number of elements of an integer array?
2 Is the size of a string array the same as the string length?
3 What is the difference between a function declaration and a

function definition?
4 Can you have two functions with the same function name in a

program?
5 How does passing an integer array to a function differ from

passing a single integer variable into a function?
6 How can you make an array that is passed into a function not

modifiable?
7 What is the down-side to recursion?

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

1. How do you get the number of elements of an integer
array?

int arr[10];

// ...

size_t num_elts = sizeof(arr) / sizeof(int);
printf("%lu\n", num_elts); // prints 10

Note that this will not work if arr is a function parameter. (Array
parameters are not actually arrays. We’ll see what they are soon.)

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Something to think about
These print statements will generate different results! Try it out!
This is a good example of why ignoring warnings is not a good idea.
// arrays_in_func.c:
#include <stdio.h>
void my_func(int arr[])
{

printf("%lu \n",sizeof(arr));
}

int main()
{

int x[5] = {4};
printf("%lu \n",sizeof(x));
my_func(x);

return 0;
}

$ gcc -std=c99 -Wall -Wextra -pedantic arrays_in_func.c
arrays_in_func.c: In function ‘my_func’:
arrays_in_func.c:4:27: warning: ‘sizeof’ on array function parameter ‘arr’ will return size of ‘int *’ [-Wsizeof-array-argument]

4 | printf("%lu \n",sizeof(arr));
| ^

arrays_in_func.c:2:18: note: declared here
2 | void my_func(int arr[])

| ~~~~^~~~~

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

2. Is the size of a string array the same as the string
length?

No.

If an array of char elements will be used to store a string value, its
number of elements must be at least the string length plus 1.
(Enough room to store the characters in the string, and the NUL
terminator.)

It is totally fine for a char array to have more room than necessary.
In this case, the elements after the NUL terminator aren’t used.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

3. What is the difference between a function declaration
and a function definition?

Function declaration: just tells the compiler the important details
about the function: its name, return type, and parameter types. It
will use this information to check calls to the function. A.k.a. a
“function prototype”.

Function definition: defines the body (code) of the function.

Each use of a function in a program should be preceded by either a
declaration or definition.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

4. Can you have two functions with the same function
name in a program?

No, not in C.

(C++ does allow this, and calls this possibility “function
overloading.”)

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

5. How does passing an integer array to a function differ
from passing a single integer variable into a function?

Yes: functions are passed by reference, not by value. This means
that the called function can change the values in the array.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Example

// pbr.c:
#include <stdio.h>
void f(int a[]) {

a[0] = 42;
}

int main(void) {
int nums[3] = {1, 2, 3};
printf("Before: nums[0]=%d\n", nums[0]);
f(nums);
printf("After: nums[0]=%d\n", nums[0]);
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic pbr.c
$./a.out
Before: nums[0]=1
After: nums[0]=42

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

6. How can you make an array that is passed into a
function not modifiable?

Declare the element type as being const. Example:
// constelem.c:
#include <stdio.h>
void f(const int a[]) {

a[0] = 42;
}

int main(void) {
int nums[3] = {1, 2, 3};
f(nums);
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic constelem.c
constelem.c: In function ‘f’:
constelem.c:3:8: error: assignment of read-only location ‘*a’

3 | a[0] = 42;
| ^

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

7. What is the down-side to recursion?
Each function call in C requires the creation of a run-time data
structure called a stack frame to store parameter values, allocate
storage for local variables, and keep track of other information
about the function call.

The amount of memory available for stack frames is limited.

A “deep” recursion could create a large number of stack frames,
which could require more memory than is available. This results in a
“stack overflow” which will crash the program.

So, avoid deep recursion.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Recursion tips

• The first thing a recursive function must do is to see whether a
base case has been reached

• If a base case hasn’t been reached, find a smaller instance of
the problem, solve it recursively, then extend the solution to
the smaller problem so that the entire problem is solved

• Example:
int sum_ints(int n) { // compute sum of integers 1..n

if (n == 1) { return 1; }
return sum_ints(n-1) + n;

}
• The subproblem solved recursively should be as large as possible

• So that very little work is required to extend the solution to be
a solution to the overall problem

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 7

• Functions and recursion!
• Breakout rooms 1–10 are “social”
• Feel free to ask for help on Slack!

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Day 8 recap questions

1 Why do we need header guards?
2 What is the difference between compiling and linking?
3 What compiler flag do we use to create object files and what

extension do those files have?
4 What is a target in a Makefile?
5 What are the advantages of using Makefiles?

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

1. Why do we need header guards?
The #include directive means (essentially) “copy the contents of
the named header file into the source code module that is being
compiled.”

Header guards prevent the contents of a header file from being
copied more than once.

Some constructs which often are placed in a header file could cause
an error if they appear more than once. In particular, struct data
types can’t be redefined.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

2. What is the difference between compiling and linking?
Compiling: converts C source code (.c source file) into “object
code” (.o “object file”).

Linking: combines one or more .o (object) files into an executable
file. Also, resolves calls to library functions (such as printf, scanf,
pow, etc.)

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

3. What compiler flag do we use to create object files and
what extension do those files have?

The -c option means “compile source code to an object file”.

Object files have a .o file extension.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

4. What is a target in a Makefile?
A Makefile target is a file to be created based on the contents of
other files.

For a C program, typically the Makefile will have targets for each
object (.o) file, as well as a target for the executable.

The first target in a Makefile is the default target. If make is
invoked without specifying an explicit target to build, the default
target is built.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

5. What are the advantages of using Makefiles?
Makefiles automate the process of compiling and linking a program.
Just run the command make, and (if the Makefie is written
correctly) the entire program will be compiled and linked.

If each target properly lists its dependencies, then make will figure
out exactly which compiler commands need to be run, and in what
order. In general, if any targets are “out of date”, meaning that one
or more dependencies is newer, or has been modified since the
target was built, make will know to rebuild the target.

TL;DR when you have a properly-written Makefile all you need to
do to build the program is run the command make.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Makefile tips

Definitions (at top of the Makefile):

CC = gcc
CFLAGS = -std=c99 -Wall -Wextra -pedantic

Target for an executable:

fooprog : foo.o bar.o
$(CC) -o fooprog foo.o bar.o

Target for an object file:

foo.o : foo.c header1.h header2.h
$(CC) $(CFLAGS) -c foo.c

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Makefile syntax

Note that the commands for a target must begin with a tab
character.

emacs and vim will show you if any comands aren’t indented with a
tab character.

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Exercise 8

• Implement the concat string-concatenation function
• Split all_in_one.c into separate source files as follows:

• run_concat.c should contain the main function
• string_functions.h should have a declaration of concat
• string_functions.c should have the definition of concat

• Modify the Makefile:
• it should have targets for run_concat (the executable),

run_concat.o, and string_functions.o
• Breakout rooms 1–10 are “social”

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 4 (June 10th)

