
601.220 Intermediate Programming

Summer 2022, Meeting 3 (June 07th)

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Today’s agenda

• Exercises 3-A, 3-B, 4 review
• “Day 5” material

• Arrays and strings
• Exercise 5

• “Day 6” material
• File I/O, functions, command line arguments
• Exercise 6

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Reminders

• HW0 should have been submitted yesterday at 11pm
• HW1 due Wednesday, June 13th

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Academic ethics for individual homeworks

• The individual homeworks (HW0, HW1, HW3, HW5, HW7)
must be completed individually

• Do not look at anyone else’s code
• Do not allow anyone (other than course staff) to look at your
code

• Do not use code from the internet, students who have taken
the course previously, etc.

• We will run a similarity comparison on submissions
• Violations will be reported to the student conduct office

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 3-A review

Personal repository setup:
git clone https://github.com/jhu-ip/2024-summer-student-JHEDID.git
cd 2024-summer-student-JHEDID
emacs README
git add README
git commit -m'added README to my personal repository'
git push

git commands that need to access the remote repository on Github
(such as git clone, git push, git pull) will require your
Github username and Personal Access Token to authenticate.

(Alternatively, you could create an ssh key and register it to your
Github account.)

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 3-A review
Preparing a git log and zipfile (exercise and homework submission
procedure):
git log > gitlog.txt
zip -9r ex03.zip README gitlog.txt
cd
mv 2022-summer-student-JHEDID/ex03.zip .

On your local computer (enter your ugrad account password when
prompted):
scp USERNAME@ugradx.cs.jhu.edu:ex03.zip .

The zipfile ex03.zip will be on your local machine in whatever
directory your command prompt was in (typically your local home
directory).

At this point you could upload the zipfile to Gradescope.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 3-B review

Create a clone of the course “public” repository:
git clone https://github.com/jhu-ip/cs220-summer24-public

Create a temporary directory and copy exercise starter files:
cd
mkdir temp
cd temp
cp ~/cs220-summer22-students/exercises/ex02/* .

Compile and run the program:
gcc -std=c99 -Wall -Wextra -pedantic hello_world.c
./a.out

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 3-B review

Make a copy of the program, modify it, compile and run the
modified version:
cp hello_world.c hello_me.c
emacs hello_me.c
gcc -std=c99 -Wall -Wextra -pedantic hello_me.c
./a.out

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 4 review

Renaming your personal repository (to make it easier to access for
future exercises, homework, etc.):
mv 2024-summer-student-JHEDID my220repo

Now you can refer to your personal repository as ~/my220repo.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 4 review

Starting an exercise (this general procedure will work for future
exercises):
cd ~/my220repo
mkdir -p exercises/ex04
cd exercises/ex04
cp ~/cs220-summer24-public/exercises/ex04/* .

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 4 review

Writing a loop to read grade followed by number of credits:
char grade;
float num_credits;

while (scanf(" %c %f", &grade, &num_credits) == 2) {
// tally grade and number of credits
// ...

}

Note that
• The space before %c makes scanf skip whitespace characters

before reading the grade character
• Otherwise it could read a whitespace character instead of the

letter grade
• If the user enters Control-D, that ends the input

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 4 review

Using a switch statement to match the grade:
switch (grade) {
case 'A': case 'a':

quality_points += (num_credits * 4.0);
break;

case 'B': case 'b':
quality_points += (num_credits * 3.0);
break;

// ...etc...

default:
// invalid grade

}

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Day 5 review question

1 When we declare an array in C, what are the initial values?
2 What is the ASCII (Unicode) table?
3 What is a null terminator? What is its ASCII value?
4 Consider c-string "ab\0cd\0" - what is the reported string

length?
5 How do we check if two C-strings are the same? In addition,

are these two strings the same: "ab\0cd\0" and "ab\0"?

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



1. When we declare an array in C, what are the initial
values?

Elements of an array are uninitialized by default. For example:

int a[3];
printf("%d\n", a[0]); // undefined behavior

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



2. What is the ASCII (Unicode) table?
Text characters are represented as integer “character codes”.

ASCII codes range from 0 to 127. Examples:
• “!” has the code 33
• “0” has the code 48
• “A” has the code 65
• “a” has the code 97

In C, a character literal (in single quotes) yields the ASCII code for
that chracter. E.g., 'A' is the integer value 65.

Unicode: encoding scheme for (essentially) all characters in all
human languages, plus symbols, emojis, etc.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



3. What is a null terminator? What is its ASCII value?
In C, a character string is

• stored in an array of char elements, and
• is terminated by a “NUL” character, which is the character
whose integer character code is 0

The NUL character can be written as '\0' or just 0.

E.g.:

char s[4] = "foo";
assert(s[0] == 'f');
assert(s[1] == 'o');
assert(s[2] == 'o');
assert(s[3] == 0);

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



4. Consider c-string "ab\0cd\0" - what is the reported
string length?

Note that \0 in a string literal means a literal NUL character.

The strlen function determines the length of a string, which is the
number of characters preceding the NUL terminator marking the
end of the string.

So:

assert(strlen("ab\0cd\0") == 2);

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



5. How do we check if two C-strings are the same? In
addition, are these two strings the same: "ab\0cd\0" and
"ab\0"?

The strcmp function returns 0 if the two strings passed as
arguments consist of the same sequence of characters.

So:

assert(strcmp("ab", "ab\0cd") == 0);
assert(strcmp("ab", "abc") != 0);

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 5

• Enhanced .bashrc and .bash_profile startup scripts
• Working with character arrays and strings
• Small demo of alias keyword.

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Day 6 recap questions

1 Is fprintf(stdout, "xxx") the same as printf("xxx")?
2 When should we use assertions instead of an if statement?
3 What will happen if you pass an int variable to a function that

takes a double as its parameter? What will happen if a
double is passed to an int parameter?

4 What is “pass by value”?
5 How do you change the main function so that it can accept

command-line arguments?

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



1. Is fprintf(stdout, "xxx") the same as
printf("xxx")?

Yes.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



2. When should we use assertions instead of an if
statement?

An assertion (use of the assert macro) means “this condition must
be true, or else we have proved that there is a bug in the program.”

Assertions are useful for checking invariants. They are also useful for
unit testing. A unit test is an automated test for a small “unit” of
the program, typically a single function. Assertions are used in a
unit test to verify that the code being tested behaved correctly.

Assertions should never be used to check for conditions that could
be true in the normal operation of the program. For example, it
would be incorrect to use an assertion to check whether a file was
opened successfully.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



3. What will happen if you pass an int variable to a
function that takes a double as its parameter? What will
happen if a double is passed to an int parameter?

An int value can be freely converted to a double with no loss of
information. The double value will be numerically the same as the
original int value.

If a double is converted to an int, it is truncated, i.e., the
fractional part is discarded.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Conversions
// conversions.c:
#include <stdio.h>
#include <assert.h>

int as_int(int x) { return x; }
double as_double(double x) { return x; }

int main(void) {
assert(as_double(3) == 3.0);
assert(as_int(6.79) == 6);
printf("tests passed\n");
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic conversions.c
$ ./a.out
tests passed

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



4. What is “pass by value”?

“Pass by value” means that a parameter is a variable that is distinct
from any other variable in the program. Changing the value of a
parameter does not change the value of any other variable in the
program.

C uses pass-by-value for all parameters except for array parameters.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Pass by value example
// pbv.c:
#include <stdio.h>

void f(int x) {
x = 42;
printf("x=%d\n", x);

}

int main(void) {
int y = 17;
f(y);
printf("y=%d\n", y);
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic pbv.c
$ ./a.out
x=42
y=17

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



5. How do you change the main function so that it can
accept command-line arguments?

Declare it like this:

int main(int argc, char *argv[]) {
// ...

}

argc is one greater than the number of command line arguments.

argv is an array of strings, where the strings are the command line
arguments. (Note that argv[0] is always the name of the
program.)

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Command line arguments example

// cmdargs.c:
#include <stdio.h>

int main(int argc, char *argv[]) {
for (int i = 0; i < argc; i++) {

printf("argv[%d] is '%s'\n", i, argv[i]);
}
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic cmdargs.c
$ ./a.out C is a "fun language"
argv[0] is './a.out'
argv[1] is 'C'
argv[2] is 'is'
argv[3] is 'a'
argv[4] is 'fun language'

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



A quick synopsis of C file I/O

• The FILE* type represents an open file (for reading or writing)
• Opening a file for reading:

FILE *in; in = fopen(filename, "r");
• Opening a file for writing:

FILE *out; out = fopen(filename, "w");
• If fopen returns NULL, it means the file wasn’t opened

successfully
• Use fscanf to read from a file, fprintf to write to a file
• When the program is done with a file, use fclose to close it

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Exercise 6

Compound interest (← click for formulas to calculate)

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)

https://www.calculatorsoup.com/calculators/financial/compound-interest-calculator.php


Notes

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Notes

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Notes

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Notes

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)



Notes

601.220 Intermediate Programming Summer 2022, Meeting 3 (June 07th)


