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Today’s agenda

• Academic ethics for individual homeworks
• Exercise 2 review
• “Day 3” material

• Git and Emacs
• Quick VIM introduction
• Demo on VIM and ugrad access
• Exercises 3-A and 3-B

• “Day 4” material
• C logical operators and control flow
• Exercise 4
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Reminders

• HW0 is due tomorrow (Thursday June 6th) by 11pm
• You will need to fully set up to use your personal Git repo!
• You will also need to have access to Gradescope
• Let us know ASAP if either of these isn’t the case

• HW1 is due Thursday, June 13th
• ugrad1 through ugrad12 likely won’t be available today

(Wednesday, June 5th)
• ugradx, ugrad13 and higher will be available as usual
• ugrad1 throught ugrad12 should be back online this evening
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Academic ethics for individual homeworks

• The individual homeworks (HW0, HW1, HW3, HW5, HW7)
must be completed individually

• Do not look at anyone else’s code
• Do not allow anyone (other than course staff) to look at your

code
• Do not use code from the internet, ChatGPT or other AI,

students who have taken the course previously, etc.
• We will run a similarity comparison on submissions
• Violations will be reported to the student conduct office
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Exercise 2 review

Reading two integers:

int a, b;
printf("Enter two integers: ");
scanf("%d", &a);
scanf("%d", &b);

Another possibility:

int a, b;
printf("Enter two integers: ");
scanf("%d %d", &a, &b);
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Exercise 2 review

The user might not enter a valid integer. You can detect this by
checking the return value of scanf, which returns a count of how
many values were read successfully.

int a;
printf("Enter an integer: ");
if (scanf("%d", &a) != 1) {

printf("invalid input\n");
}

This technique will be useful for HW1.
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Exercise 2 review

Computations on input values a and b:

int sum, diff, prod, quot, rem;
sum = a + b;
diff = a - b;
prod = a * b;
quot = a / b;
rem = a % b;
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Exercise 2 review

Printing results of computations:

printf("%d + %d = %d", a, b, sum);
printf("%d - %d = %d", a, b, diff);
printf("%d * %d = %d", a, b, prod);
printf("%d / %d = %d", a, b, quot);
printf("%d %% %d = %d", a, b, rem);

Note %% in a printf format string means “print a literal %
character.”
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Day 3 recap questions

1 Why do we use version control system like git?
2 Name six common git commands?
3 What are the files that must be included in your submission?
4 How do you save and quit on emacs editor?
5 How do you search and replace on emacs?
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1. Why do we use version control system like git?

Version control systems record and archive a history of “snapshots”
the files in a project. (Git calls these snapshots “commits”.)

Advantages:
• Know exactly how code changed, be able to revert to working

code if a bug is introduced or if a file is lost/corrupted
• Serves as a backup when you push commits to a remote

repository (i.e., on Github)
• Team members can share changes with each other. (This is

essential for team projects.)
• Synchronize files between multiple computers
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2. Name six common git commands?
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2. Name six common git commands?

1 git init: initialize the current directory as a new Git
repository

2 git add: specify file(s) that should be part of the next commit
3 git commit: create a new commit with all of the

modifications staged using git add, with a meaningful log
message

4 git status: show which files have been modified are haven’t
yet been added to the repository

5 git diff: show file modifications (relative to the previous
commit)

6 git push: send commit(s) to the remote “origin” repository
7 git pull: receive commit(s) from the origin repository
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How Git works
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3. What are the files that must be included in your
submission?

• All source files (e.g., .c, .h files)
• gitlog.txt: summarizes your Git commits
• Possibly: README
• Possibly: a Makefile (once we’ve covered make)

Create a zip file with all of these files, copy it to your local
computer, then upload the zip file to Gradescope. E.g.:
cd ~/my220repo/homework/hw0
zip -9r my_hw0.zip *.c gitlog.txt

On your local machine
scp USERNAME@ugradx.cs.jhu.edu:my220repo/homework/hw0/my_hw0.zip .
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4. How do you save and quit on emacs editor?

Save: Control-X followed by Control-S

Quit: Control-X followed by Control-C

Pro tip: use multiple terminal windows! Keep your editor (e.g.,
Emacs) open in one terminal, then use another terminal to run
compiler commands, run the program, etc.
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5. How do you search and replace on emacs?

Meta-% (a.k.a. ESC followed by %)

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)



A quick glance on another editor . . . VIM

Vim’s design is based on the idea that a lot of programmer time is
spent reading, navigating, and making small edits, as opposed to
writing long streams of text. For this reason, Vim has multiple
operating modes.

• Normal: for moving around a file and making edits
• Insert: for inserting text
• Replace: for replacing text
• Visual (plain, line, or block): for selecting blocks of text
• Command-line: for running a command

Copied directly from https://missing.csail.mit.edu/2020/editors/

This is the resource I used when I was first introduced to VIM.
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vi and Vim book
Another resource for learning Vim: Robbins et. al., Learning the vi
and Vim Editors

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)



Work on Exercises 3-A and 3-B

Exercise 3-A: clone your personal Github repo, practice creating a
zipfile and transferring it to your local computer (assignment
submission workflow)

Exercise 3-B: Clone the course public Git repo and copy starter code
from it (workflow for starting an exercise or homework assignment)

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.
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Day 4 recap questions

1 Which one is the logical “and” operator in C, && or & or both?
2 Which one is the logical “negation” operator in C, ~ or ! or

both?
3 What is the result of evaluating (34 + 2) / 40 || 80 >

'A' && 15 % 4 ?
4 What does the keyword break do in a control structure?
5 What does the keyword continue do in loops?
6 How many times is the initialize statement in a for loop

executed?
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1. Which one is the logical “and” operator in C, && or & or
both?

&& is the logical “and” operator.

& is the bitwise “and” operator.

If you’re expressing a condition (for an if, if/else, or loop) then you
want &&.
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2. Which one is the logical “negation” operator in C, ~ or !
or both?

! is the logical negation operator.

~ is bitwise complement, a.k.a. bitwise negation.
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3. What is the result of evaluating (34 + 2) / 40 || 80
> 'A' && 15 % 4 ?

Key ideas:
• 0 is false, and all other integer values are true
• all logical operators are guaranteed to produce either 0 or 1 as

a result
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4. What does the keyword break do in a control structure?
break jumps to the code that follows the control structure.

So, it can be used to terminate a loop early.

Important: break (and continue) can make loops harder to
understand. They should be used very sparingly, and only when they
truly simplify the code.
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break and switch statements
break is also used to end a case (or group of cases) in a switch
statement. This is a necessary use of break (as opposed to break
in the body of a loop, which is never strictly necessary.)
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5. What does the keyword continue do in loops?
continue jumps to the top of the loop.

Again, this can make the loop harder to understand, so use sparingly.
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6. How many times is the initialize statement in a for loop
executed?

Once, before the loop starts.

Assume i is an int variable. These loops are equivalent:

// while loop
i = 1;
while (i <= 10) {

printf("%d\n", i);
i++;

}

// for loop
for (i = 1; i <= 10; i++) {

printf("%d\n", i);
}
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Exercise 4

GPA calculator program: practice
• starting an exercise using code in the public repository
• input using scanf
• output using printf
• loops
• switch statements

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)



Notes
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