
601.220 Intermediate Programming

Summer 2024, Meeting 2 (June 5th)

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Guest instructor: David Hovemeyer

Today’s agenda

• Academic ethics for individual homeworks
• Exercise 2 review
• “Day 3” material

• Git and Emacs
• Quick VIM introduction
• Demo on VIM and ugrad access
• Exercises 3-A and 3-B

• “Day 4” material
• C logical operators and control flow
• Exercise 4

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Reminders

• HW0 is due tomorrow (Thursday June 6th) by 11pm
• You will need to fully set up to use your personal Git repo!
• You will also need to have access to Gradescope
• Let us know ASAP if either of these isn’t the case

• HW1 is due Thursday, June 13th
• ugrad1 through ugrad12 likely won’t be available today

(Wednesday, June 5th)
• ugradx, ugrad13 and higher will be available as usual
• ugrad1 throught ugrad12 should be back online this evening

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Academic ethics for individual homeworks

• The individual homeworks (HW0, HW1, HW3, HW5, HW7)
must be completed individually

• Do not look at anyone else’s code
• Do not allow anyone (other than course staff) to look at your

code
• Do not use code from the internet, ChatGPT or other AI,

students who have taken the course previously, etc.
• We will run a similarity comparison on submissions
• Violations will be reported to the student conduct office

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Exercise 2 review

Reading two integers:

int a, b;
printf("Enter two integers: ");
scanf("%d", &a);
scanf("%d", &b);

Another possibility:

int a, b;
printf("Enter two integers: ");
scanf("%d %d", &a, &b);

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Exercise 2 review

The user might not enter a valid integer. You can detect this by
checking the return value of scanf, which returns a count of how
many values were read successfully.

int a;
printf("Enter an integer: ");
if (scanf("%d", &a) != 1) {

printf("invalid input\n");
}

This technique will be useful for HW1.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Exercise 2 review

Computations on input values a and b:

int sum, diff, prod, quot, rem;
sum = a + b;
diff = a - b;
prod = a * b;
quot = a / b;
rem = a % b;

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Exercise 2 review

Printing results of computations:

printf("%d + %d = %d", a, b, sum);
printf("%d - %d = %d", a, b, diff);
printf("%d * %d = %d", a, b, prod);
printf("%d / %d = %d", a, b, quot);
printf("%d %% %d = %d", a, b, rem);

Note %% in a printf format string means “print a literal %
character.”

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Day 3 recap questions

1 Why do we use version control system like git?
2 Name six common git commands?
3 What are the files that must be included in your submission?
4 How do you save and quit on emacs editor?
5 How do you search and replace on emacs?

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

1. Why do we use version control system like git?

Version control systems record and archive a history of “snapshots”
the files in a project. (Git calls these snapshots “commits”.)

Advantages:
• Know exactly how code changed, be able to revert to working

code if a bug is introduced or if a file is lost/corrupted
• Serves as a backup when you push commits to a remote

repository (i.e., on Github)
• Team members can share changes with each other. (This is

essential for team projects.)
• Synchronize files between multiple computers

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

2. Name six common git commands?

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

2. Name six common git commands?

1 git init: initialize the current directory as a new Git
repository

2 git add: specify file(s) that should be part of the next commit
3 git commit: create a new commit with all of the

modifications staged using git add, with a meaningful log
message

4 git status: show which files have been modified are haven’t
yet been added to the repository

5 git diff: show file modifications (relative to the previous
commit)

6 git push: send commit(s) to the remote “origin” repository
7 git pull: receive commit(s) from the origin repository

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

How Git works

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

3. What are the files that must be included in your
submission?

• All source files (e.g., .c, .h files)
• gitlog.txt: summarizes your Git commits
• Possibly: README
• Possibly: a Makefile (once we’ve covered make)

Create a zip file with all of these files, copy it to your local
computer, then upload the zip file to Gradescope. E.g.:
cd ~/my220repo/homework/hw0
zip -9r my_hw0.zip *.c gitlog.txt

On your local machine
scp USERNAME@ugradx.cs.jhu.edu:my220repo/homework/hw0/my_hw0.zip .

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

4. How do you save and quit on emacs editor?

Save: Control-X followed by Control-S

Quit: Control-X followed by Control-C

Pro tip: use multiple terminal windows! Keep your editor (e.g.,
Emacs) open in one terminal, then use another terminal to run
compiler commands, run the program, etc.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

5. How do you search and replace on emacs?

Meta-% (a.k.a. ESC followed by %)

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

A quick glance on another editor . . . VIM

Vim’s design is based on the idea that a lot of programmer time is
spent reading, navigating, and making small edits, as opposed to
writing long streams of text. For this reason, Vim has multiple
operating modes.

• Normal: for moving around a file and making edits
• Insert: for inserting text
• Replace: for replacing text
• Visual (plain, line, or block): for selecting blocks of text
• Command-line: for running a command

Copied directly from https://missing.csail.mit.edu/2020/editors/

This is the resource I used when I was first introduced to VIM.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

vi and Vim book
Another resource for learning Vim: Robbins et. al., Learning the vi
and Vim Editors

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Work on Exercises 3-A and 3-B

Exercise 3-A: clone your personal Github repo, practice creating a
zipfile and transferring it to your local computer (assignment
submission workflow)

Exercise 3-B: Clone the course public Git repo and copy starter code
from it (workflow for starting an exercise or homework assignment)

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Day 4 recap questions

1 Which one is the logical “and” operator in C, && or & or both?
2 Which one is the logical “negation” operator in C, ~ or ! or

both?
3 What is the result of evaluating (34 + 2) / 40 || 80 >

'A' && 15 % 4 ?
4 What does the keyword break do in a control structure?
5 What does the keyword continue do in loops?
6 How many times is the initialize statement in a for loop

executed?

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

1. Which one is the logical “and” operator in C, && or & or
both?

&& is the logical “and” operator.

& is the bitwise “and” operator.

If you’re expressing a condition (for an if, if/else, or loop) then you
want &&.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

2. Which one is the logical “negation” operator in C, ~ or !
or both?

! is the logical negation operator.

~ is bitwise complement, a.k.a. bitwise negation.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

3. What is the result of evaluating (34 + 2) / 40 || 80
> 'A' && 15 % 4 ?

Key ideas:
• 0 is false, and all other integer values are true
• all logical operators are guaranteed to produce either 0 or 1 as

a result

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

4. What does the keyword break do in a control structure?
break jumps to the code that follows the control structure.

So, it can be used to terminate a loop early.

Important: break (and continue) can make loops harder to
understand. They should be used very sparingly, and only when they
truly simplify the code.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

break and switch statements
break is also used to end a case (or group of cases) in a switch
statement. This is a necessary use of break (as opposed to break
in the body of a loop, which is never strictly necessary.)

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

5. What does the keyword continue do in loops?
continue jumps to the top of the loop.

Again, this can make the loop harder to understand, so use sparingly.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

6. How many times is the initialize statement in a for loop
executed?

Once, before the loop starts.

Assume i is an int variable. These loops are equivalent:

// while loop
i = 1;
while (i <= 10) {

printf("%d\n", i);
i++;

}

// for loop
for (i = 1; i <= 10; i++) {

printf("%d\n", i);
}

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Exercise 4

GPA calculator program: practice
• starting an exercise using code in the public repository
• input using scanf
• output using printf
• loops
• switch statements

Breakout rooms 1–10 are “social”, breakout rooms 11+ are for
individual or small group work.

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

Notes

601.220 Intermediate Programming Summer 2024, Meeting 2 (June 5th)

