601.220 Intermediate Programming

Binary file I/O and dynamic allocation of multi-dimensional
arrays

601.220 Intermediate Programming Binary file /O and dynamic allocation of multi-dimensional arrays



Outline

® Advanced (i.e., binary) file 1/O

601.220 Intermediate Programming Binary file /O and dynamic allocation of multi-dimensional arrays



Advanced file I/O

® Until now, we've only accessed text files from within our C

programs
® These files use ANSI standard mapping; one byte stores one char

® But there are other types of files (that emacs/vim/less don't
know how to read)

601.220 Intermediate Programming Binary file I/O and dynamic allocation of multi-dimensional arrays



Binary files

® We call anything that isn't a text file a "binary” file
® We won't use the ANSI mapping on these files; just give the
programmer the bits and allow programmer to interpret them
however they wish
® For some types of data, storing as binary can be much more
efficient than as text
® For numbers, ANSI uses one byte per decimal digit. Instead of
storing 0-255, one byte is used to store only 0-9
® | arge data files such as images, audio, and video files are
typically stored in binary format

601.220 Intermediate Programming Binary file I/O and dynamic allocation of multi-dimensional arrays



Reading and writing to binary files

® To tell C to open a file as a binary file (not necessary on most
Unix systems, but good practice anyway), add “b" to the open
mode
® FILE xfp = fopen("data.dat", "rb"); opens the file in
binary read mode

601.220 Intermediate Programming Binary file I/O and dynamic allocation of multi-dimensional arrays



Reading and writing to binary files

® Instead of using only fscanf/fgets/fprintf, we can use
fread/fwrite commands for binary files

® Work for arrays, structs, arrays of structs

® Particularly useful for reading/writing large amounts of data in
one operation

e Literally copy bits from disk to memory (fread), or memory to
disk (fwrite)

® Binary files are less portable than text, due to some types being
different sizes on some architectures, for example

601.220 Intermediate Programming Binary file I/O and dynamic allocation of multi-dimensional arrays



Reading and writing to binary files

® How do fread and fwrite work?
® These functions take a pointer to a block of memory, an
element size, a number of elements, and a filehandle
® fread then reads size_of_el * num_els bytes of memory
from the file beginning at the file cursor location £p, and stores
them starting at pointer location where_to
® fread returns the number of items successfully written (should
be same as num_els if all goes well)
® int items_read = fwrite(where_to, size_of_el,
num_els, fp);
o fwrite does the opposite, copying data from memory to the
specified file
® int items_written = fwrite(where_from, size_of _el,
num_els, fp);

601.220 Intermediate Programming Binary file I/O and dynamic allocation of multi-dimensional arrays



Example

printf ("Error opening data.dat\n");

#include <stdio.h> N return 13
int main() // reads an array of integers
{ int num_of_ints = fread(arr_read,

sizeof (arr_read[0]), SIZE, fp);
if (num_of _ints != SIZE) {
printf("problem reading data.dat\n");

const int SIZE = 100;
int arr_write[SIZE];
for (int i = 0; i < 100; i++) {

arr_write[i]l = i * 10; 3 return 1;
FILE *fp = fopen('data.dat", "wb"); if (feof(p)) { .
it (1fp) { printf("error: unexpected eof\n");
printf ("Error opening data.dat\n"); 3 return 1;
return 1; .
3 if (ferror(fp)) {
// writes an array of integers printf("error reading data.dat\n");
- ¥

furite(arr_write, sizeof (arr_write[0]), SIZE, fp);

fclose(£p); for (int i = 0; i < 100; i++) {

printf("arr_read[%d] = %d\n", i, arr_read[il]);
int arr_read[SIZE];

fp = fopen("data.dat","rb"); 3
if (fp) {

fclose(fp);

$ gcc -std=c99 -Wall -Wextra -pedantic bin_io.c
$ ./a.out

arr_read[0] 0

arr_read[1] 10

arr_read[2] = 20

220 Intermediate Programmi Binary file /O and dynamic allocation of multi-dimensional arrays



