
601.220 Intermediate Programming

File I/O, assertion, math functions

601.220 Intermediate Programming File I/O, assertion, math functions

Outline

• File input and output (fscanf, fprintf)
• Assertion
• Math library functions

601.220 Intermediate Programming File I/O, assertion, math functions

Standard streams

We’ve seen I/O functions that work only with stdin/stdout

• printf, scanf

Others work with any file, including named files and the standard
streams (stdin/stdout/stderr)

• fprintf, fscanf

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

fopen("output.txt", "w")

• Open file "output.txt" in writing mode ("w")

Possible modes:

• "r": reading
• "w": open file for writing
• "r+": open for reading & writing
• "w+": open file for reading & writing

"r" or "w" are common

Note: "w" and "w+" cause the named file to be overwritten if it
already exists

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

fopen returns a FILE*, a pointer to a FILE struct

• We’ll return to structs and pointers later

Equals NULL if fopen failed

• Always check, since reading or writing NULL causes a crash
• NULL is a special pointer value, usually equal to 0; common
way to indicate failure for functions with pointer return type

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

• feof(fileptr) returns non-zero if we’ve read past the end of
the file

• ferror(fileptr) returns non-zero if file is in an error state,
e.g. if we’ve opened file for writing but then attempt a read

• rewind(fileptr) returns fileptr to beginning of file

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

// numbers.txt:
10 20
3 50
100 -100
400 -800

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

// file_io_loop_eg.c:
#include <stdio.h>
int main() {

FILE* input = fopen("numbers.txt", "r");
if (input == NULL) {

printf("Error: could not open input file\n");
return 1; // indicate error

}

int a = 0, b = 0;
int numCollected = fscanf(input, "%d%d", &a, &b);
while (numCollected == 2) {

printf("%d\n", a+b);
numCollected = fscanf(input, "%d%d", &a, &b);

}

if (ferror(input)) {
printf("Error: error indicator ");
printf("was set for input file\n");
return 2; // indicate error

} else if (numCollected != EOF) {
printf("Error: could not parse line\n");
return 3; // indicate error

}

fclose(input); // Close input file
return 0; // no error

}

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

$ gcc file_io_loop_eg.c -std=c99 -pedantic -Wall -Wextra
$ cat numbers.txt
10 20
3 50
100 -100
400 -800
$./a.out
30
53
0
-400

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

We saw that printf and scanf use the standard streams

You can refer to them by these names, defined in stdio.h

• stdin
• stdout
• stderr

You don’t have to open or close them; C handles that

For example, fprintf can write to stdout like printf:

fprintf(stdout, "Hello, World\n");

601.220 Intermediate Programming File I/O, assertion, math functions

C file I/O

In addition to being useful for printing output to a file opened using
fopen, fprintf is also useful for printing error messages to
stderr. For example:

FILE *in = fopen(filename, "r");
if (in == NULL) {

fprintf(stderr, "Could not open '%s'\n", filename);
return 1;

}

601.220 Intermediate Programming File I/O, assertion, math functions

Assertions

assert(boolean expression);

• Assertion statements help catch bugs as close to the source as
possible

• Require #include <assert.h>
• boolean expression is an expression that should be true if

everything is OK
• If it’s false, program immediately exits with an error message

indicating the assertion failed
• Starting with next programming assignment (HW3), you must
create test cases using assert

601.220 Intermediate Programming File I/O, assertion, math functions

Assertions

Assertions can help to make your assumptions clear

int sum = a*a + b*b;
assert(sum >= 0);

if(isalpha(c)) {
assert(c >= 'A');
printf("%d\n", c - 'A');

}

601.220 Intermediate Programming File I/O, assertion, math functions

Assertions

assert is not for typical error checking

FILE* input = fopen("numbers.txt", "r");
if(input == NULL) {

printf("Error: could not open input file\n");
return 1; // indicate error

}

If checking for bad user input, or another strange but not impossible
situation, use if and print a meaningful message. If you must exit,
return non-zero to indicate failure.

If you’re checking for something that implies that your program is
incorrect, use assert

601.220 Intermediate Programming File I/O, assertion, math functions

Assertions

// assert_eg.c:
#include <stdio.h>
#include <assert.h>

int main() {
int n = 0;
scanf("%d", &n);
if(n == 0) {

printf("n must not be 0\n");
return 1;

}

int n_sq = n * n;
assert(n_sq >= n); // if false, something's wrong

float n_inv = 1.0 / n;
printf("squared=%d, inverse=%0.2f\n", n_sq, n_inv);
return 0;

}

601.220 Intermediate Programming File I/O, assertion, math functions

Assertions

$ gcc assert_eg.c -std=c99 -pedantic -Wall -Wextra
$ echo 4 | ./a.out
squared=16, inverse=0.25

$ echo -2 | ./a.out
squared=4, inverse=-0.50

$ echo 0 | ./a.out
n must not be 0

$ echo 200000000 | ./a.out
Assertion failed: (n_sq >= n), function main,

file assert_eg.c, line 12.

The last run fails due to overflow of int!

601.220 Intermediate Programming File I/O, assertion, math functions

Math library

#include <math.h> and compile with -lm option

• sqrt(x): square root
• pow(x, y): xy

• exp(x): ex

• log(x): natural log
• log10(x): log base 10
• ceil(x) / floor(x): round up / down to nearest integer
• sin(x): sine (other trigonometric functions available)

601.220 Intermediate Programming File I/O, assertion, math functions

Math library

x and y arguments have type double

It’s also OK to pass another numeric type, like int

• Argument type promotion: int -> float -> double

-lm includes the math library when linking; more on this next
meeting.

601.220 Intermediate Programming File I/O, assertion, math functions

