
601.220 Intermediate Programming

Summer 2023, Meeting 22 (July 24th)

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Today’s agenda

• Exercise 35 review
• Exercise 36 review
• Day 37 recap questions
• Work on final project

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Reminders/Announcements

• Final project due by 11pm on Friday, July 28th
• Final exam in class on Friday, July 28th

• Review materials are posted on the course website
• Final exam review session: next week, we will announce on

Piazza when details are finalized
• Final project contributions are due by 11pm on Saturday, July

29th. This survey corresponds to 5 percent of your final
project.

• No extensions will be given to either the final project or the
contributions survey.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Grading clarifications
• Contributions surveys are 5% of you project grades.
• Depending on the amount of work done by each member,
individual grades were modified.

• See comments left on Q1 of the contributions survey to see
your modifications.

• Not everybody got a modification.

Figure 1: midterm adjustments
601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 35 review

Checking whether file was opened successfully in readFile
function:

std::ifstream fin(filename);
if (!fin.is_open()) {

throw std::ios_base::failure("could not open file");
}

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 35 review

Handling the exception in main:

std::vector<int> numbers;
try {

numbers = readFile(argv[1]);
// ...code to print out the values in the vector...
return 0;

} catch (std::ios_base::failure &ex) {
std::cerr << "Error: " << ex.what() << "\n";
return 1;

}

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 35 review
Seeing what happens when readFile reads non-integer data:
$./exceptionExercise nonIntData.txt
Error: File contains non-integer data!

Handling std::invalid_argument in main:

try {
// code calling readFile

} catch (std::ios_base::failure &ex) {
std::cerr << "Error: " << ex.what() << "\n";
return 1;

} catch (std::invalid_argument &ex) {// <-- another catch block
std::cerr << "Error: " << ex.what() << "\n";
return 1;

}

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 36 review
Implementing MyList::iterator:

class iterator {
const MyNode<T>* ptr;

public:
iterator(const MyNode<T>* initial) : ptr(initial) { }
// use compiler-generated copy ctor and assignment op

iterator& operator++() { ptr = ptr->next;
return *this; }

bool operator!=(const iterator& o) const
{ return ptr != o.ptr; }

T& operator*() const { return ptr->data; }

};

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 36 review

Implementing MyList::begin() and MyList::end():

iterator begin() { return iterator(head); }

iterator end() { return iterator(nullptr); }

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 36 review
Implementing MyList::const_iterator:

class const_iterator {
private:

MyNode<T> *ptr;

public:
const_iterator(MyNode<T> *initial) : ptr(initial) { }
// use compiler-generated copy ctor and assignment op

const_iterator& operator++() { ptr = ptr->next;
return *this; }

bool operator!=(const const_iterator &other) const
{ return ptr != other.ptr; }

const T& operator*() const { return ptr->data; }
};

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 36 review

Implementing MyList::cbegin() and MyList::cend():

const_iterator cbegin() const
{ return const_iterator(head); }

const_iterator cend() const
{ return const_iterator(nullptr); }

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Exercise 36 review

Implementing MyList constructor from begin/end iterators:

template<typename Itr>
MyList<T>(Itr i_begin, Itr i_end) : head(nullptr) {

for (Itr i = i_begin; i != i_end; ++i) {
insertAtTail(*i);

}
}

Note that the Itr type parameter is the iterator type for the
collection we are copying data from. Because it is a type parameter,
we can copy from any type of collection that supports iterators.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Day 37 recap questions

1 How do you pass functionality as an argument to a function in
C?

2 If you template the function type, what else can you pass in as
an argument to a function in C++?

3 What are two advantages of using lambdas?
4 Why is the auto keyword essential?
5 Why else is the auto keyword useful?

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

1. How do you pass functionality as an argument to a
function in C?

In C, we can use a function pointer to pass the identity of a
function as an argument to another function.

The C library qsort function takes advantage of this possibility.

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

qsort example program

// qsort.c:
#include <stdio.h>
#include <stdlib.h>
int compare_doubles(const void *left, const void *right)

{ double diff = *((const double *)left) - *((const double *)right);
if (diff < 0.0) return -1;
if (diff > 0.0) return 1;
return 0; }

int main(void) {
double arr[] = { 8.7, 2.8, 1.8, 9.9, 1.2, 5.1, 8.4 };
qsort(arr, 7, sizeof(double), compare_doubles);
for (int i = 0; i < 7; i++) { printf("%.1f ", arr[i]); }
printf("\n");
return 0;

}

$ gcc -g -std=c11 -Wall -Wextra -pedantic qsort.c -o qsort
$./qsort
1.2 1.8 2.8 5.1 8.4 8.7 9.9

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Disadvantages of function pointers

Function pointers have concrete parameter types and return type.
So, there’s no direct way to allow them to be generic. (Hence, the
use of const void * as the pointer type in the comparison
function.)

Also, a function pointer is just that, a pointer to a function. It is
not an object, and can’t have member variables to hold extra data
that the function might need.

(In Linux, run the command man 3 qsort , and notice how there is
a qsort_r function. Its purpose is to allow the comparison function
to have access to additional information, beyond just pointers to the
elements being compared.)

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

2. If you template the function type, what else can you
pass in as an argument to a function in C++?

You can pass in a functor, which is simply an object which has an
overloaded function call operator.

Because an object is an instance of a class, it can have member
variables to store extra information. The class can also be generic.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

A template function supporting a functor

Consider how std::sort is declared:

template< class RandomIt, class Compare >
void sort(RandomIt first, RandomIt last, Compare comp);

Compare is a type parameter, so comp could be an object. A
function pointer would work too! It just has to be something that
can be called on the values being compared, and return true if the
left value should be ordered before the right one.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Case-insensitive string sorting in C++
// cisort.cpp:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
#include <cctype>

std::string make_lower(const std::string &s) {
std::string result;
for (unsigned i = 0; i < s.size(); i++) { result += ::tolower(s[i]); }
return result;

}

struct CaseInsensitiveCompare { // a functor type!
bool operator()(const std::string &left, const std::string &right) const

{ return make_lower(left) < make_lower(right); }
};

int main() {
std::vector<std::string> v { "cat", "Fish", "Zebra", "whale" };
std::sort(v.begin(), v.end(), CaseInsensitiveCompare());
for (const std::string &s : v) { std::cout << s << " "; }
std::cout << "\n";

}

$ g++ -g -std=c++11 -Wall -Wextra -pedantic cisort.cpp -o cisort
$./cisort
cat Fish whale Zebra

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

3. What are two advantages of using lambdas?

C++ lambdas are a mechanism for creating functor objects.

They are defined “on the fly”, right at the point in the program
where they are needed. This means you don’t have to define an
explicit struct or class type that your functor is an instance of.

There is a mechanism for capturing values or references to variables
that are in scope at the point where the lambda is created. This
means they can naturally take advantage of surrounding values and
variables in the program.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Case-insensitive string sorting using a lambda
// cisort2.cpp:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
#include <cctype>

std::string make_lower(const std::string &s) {
std::string result;
for (unsigned i = 0; i < s.size(); i++) { result += ::tolower(s[i]); }
return result;

}

int main() {
std::vector<std::string> v { "cat", "Fish", "Zebra", "whale" };
auto compare = [](const std::string &left, const std::string &right) {

return make_lower(left) < make_lower(right);
};
std::sort(v.begin(), v.end(), compare);
for (const std::string &s : v) { std::cout << s << " "; }
std::cout << "\n";

}

$ g++ -g -std=c++11 -Wall -Wextra -pedantic cisort2.cpp -o cisort2
$./cisort2
cat Fish whale Zebra

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

std::find_if

The std::find_if function searches a range of elements to find
the first one (if any) matched by a predicate. The predicate is a
functor taking an element as a parameter, and returning true or
false.

It is declared as follows:

template <class InputIterator, class UnaryPredicate>
InputIterator
find_if(InputIterator first, InputIterator last,

UnaryPredicate pred);

std::find_if is a generalized sequential search function.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Find first even element in a range of integers

// findeven.cpp:
#include <iostream>
#include <vector>
#include <algorithm>

int main() {
std::vector<int> v { 17, 23, 27, 44, 97, 93, 14 };

auto is_even = [](int val) { return (val % 2) == 0; };

auto i = std::find_if(v.begin(), v.end(), is_even);

if (i != v.end()) { std::cout << *i << "\n"; }
else { std::cout << "not found\n"; }

}

$ g++ -g -std=c++11 -Wall -Wextra -pedantic findeven.cpp -o findeven
$./findeven
44

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Find first multiple of N
// findmultn.cpp:
#include <iostream>
#include <vector>
#include <algorithm>

int main() {
int n;
std::cin >> n;

std::vector<int> v { 17, 23, 27, 44, 97, 93, 14 };

auto pred = [n](int val) { return (val % n) == 0; };

auto i = std::find_if(v.begin(), v.end(), pred);

if (i != v.end()) { std::cout << *i << "\n"; }
else { std::cout << "not found\n"; }

}

$ g++ -g -std=c++11 -Wall -Wextra -pedantic findmultn.cpp -o findmultn
$ echo "11" | ./findmultn
44
$ echo "6" | ./findmultn
not found

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Captures

The findmultn.cpp program created a lambda which uses the
value of an int variable n:

int n;
std::cin >> n;
// ...
auto pred = [n](int val) { return (val % n) == 0; };

The [n] at the beginning of the lambda is its capture list. In this case,
the variable n is captured by value. If the capture list were specified as
[&n], then n would be captured by reference, meaning that the lambda
would be able to modify n.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

4. Why is the auto keyword essential?
A lambda has a type. You can think of this type as being equivalent
to the struct or class type you would have had to write. E.g.:

auto pred = [n](int val) { return (val % n) == 0; };

vs.

struct MatchMultipleOfN {
int n;
MatchMultipleOfN(int n) : n(n) { }
bool operator()(int val) const { return (val % n) == 0; }

};

// ...

auto pred = MatchMultipleOfN(n);

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Lambda types are generated by the compiler

Because the type of a lambda is generated by the compiler, as a
programmer you have no way of knowing what the name of the type
is!

The auto keyword allows you to declare a variable whose type is
based on the value you use to initialize the variable.

This is perfect for lambdas, since only the compiler knows the type
of the lambda.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

5. Why else is the auto keyword useful?

The auto keyword allows you to declare a variable without explicitly
having to name its type. For example:

for (auto i = coll.begin(); i != coll.end(); ++i) {
// ...do something with *i...

}

This loop will work as long as coll is a type with begin() and end()
member functions returning iterators. We don’t need to explicitly name
the iterator type.

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Work on final project

There is no exercise on lambdas. So, please work on the final
project, and use Slack to let us know if you have any questions!

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 22 (July 24th)

