
601.220 Intermediate Programming

Summer 2023, Meeting 19 (July 17th)

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Today’s agenda

• Review exercises 29 and 30
• Day 31 recap questions
• Exercise 31
• Day 32 recap questions
• Exercise 32

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Reminders/Announcements

• HW7 is due Thursday, July 21st
• We are covering template classes today, this material is needed

for the TTrie class
• Final project team formation

• Submit the Google form in Piazza post 118 (pinned) by 11 am
on Tuesday (July 18th)

• If you aren’t registered as being on a team by Wednesday (July
19th) you will be assigned to a team

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review
Overloading tthe output stream insertion operator for the Complex
class:

// in complex.h (in the Complex class definition)

friend std::ostream& operator<<(std::ostream &out,
const Complex &c);

// in complex.cpp

std::ostream& operator<<(std::ostream &out,
const Complex &c) {

out << c.rel << " + " << c.img << "i";
return out;

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review

Copy constructor and assignment operator

// in complex.cpp

Complex::Complex(const Complex &other)
: rel(other.rel), img(other.img) {

}

Complex& Complex::operator=(const Complex &rhs) {
if (this != &rhs) {

rel = rhs.rel;
img = rhs.img;

}
return *this;

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review

Overloaded operators for arithmetic, in complex.h (in the class
definition for the Complex class):

Complex operator+(const Complex& rhs) const;
Complex operator-(const Complex& rhs) const;
Complex operator*(const Complex& rhs) const;
Complex operator*(const float& rhs) const;
Complex operator/(const Complex& rhs) const;

Since these are defined as member functions, they only need one
parameter, which is the right-hand-side operand. (The left hand
Complex object in the expression will be the receiver object.)

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review

Implementations of arithmetic operators in complex.cpp:

Complex Complex::operator+(const Complex& rhs) const {
Complex sum(rel+rhs.rel, img+rhs.img);
return sum;

}

Complex Complex::operator-(const Complex& rhs) const {
return *this + (rhs * -1.0f);

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review

Implementation of multiplication:

Complex Complex::operator*(const Complex& rhs) const {
float a = rel;
float b = img;
float c = rhs.rel;
float d = rhs.img;
// (a+bi) * (c+di) = a*c + (a*d)i + (b*c)i + (b*d)(i^2)
// = (a*c - b*d) + (a*d + b*c)
return Complex(a*c - b*d, a*d + b*c);

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 29 review
Non-member * operator for float times Complex:

// in complex.h

friend Complex operator*(float lhs, const Complex &rhs);

// in complex.cpp

Complex operator*(float lhs, const Complex &rhs) {
return rhs * lhs;

}

This operator can’t be a member function because the value on the
left-hand-side is not an object. Also, this function technically
doesn’t need to be a friend because it invokes the public Complex
times float operator.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 30 review

Goal complete functions from integer set data structure. No
repeated values allowed.

// copy constructor
int_set::int_set(const int_set& orig) : int_set() {

for(const int_node *node=orig.head ; node ; node=node->get_next())
add(node->get_data());

}

// destructor
int_set::~int_set() {

clear();
}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 30 review

// += operator
int_set& int_set::operator+=(int new_value) {

add(new_value);
return *this;

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 30 review

// assignment operator
int_set& int_set::operator=(const int_set &rhs) {

if (this != &rhs) {
clear(); // delete old linked list

int_node *n = other.head;
while (n != nulptr) {

add(n->get_data());
n = n->get_next();

}
}
return *this;

}

Note: inefficient because add is O(N). Overall running time is O(N2).

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 30 review

// output stream insertion operator
std::ostream& operator<<(std::ostream& os, const int_set& s){

int_node *n = s.head;
os << "{";
while (n != nullptr) {

os << n->get_data();
if (n->get_next() != nullptr) { os << ", "; }
n = n->get_next();

}
os << "}";
return os;

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Day 31 recap questions

1 How do we declare a template function?
2 Under what conditions would you consider making a function

templated?
3 What is template instantiation?
4 Can we separate declaration and definition when using

templates?
5 Why shouldn’t template definitions be in .cpp files?

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

1. How do we declare a template function?

// Example
template<typename T>
T get_max(const T &left, const T &right) {

if (left > right) { return left; }
else { return right; }

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Type parameter inference

T is a “type parameter”. In a call to get_max, T is inferred from the
argument type. E.g.

int a = get_max(3, 4); // T is int
double b = get_max(5.0, 6.0); // T is double

std::string s1 = "hi", s2 = "hello";
std::string c = get_max(s1, s2); // T is std::string

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

2. Under what conditions would you consider making a
function templated?

Template functions are usuefful when you want to allow the function
to work with a variety of different data types.

The data types that will be substituted for the type parameter(s)
must have common operations that will be used by the template
function.

For example, the get_max function (shown previously) requires the
data type T to have a > operator, and also a copy constructor.

All of the built-in types (int, double, etc.) have these a > operator,
assignment operator, and copy constuctor. (A.k.a. “value
semantics”.)

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

3. What is template instantiation?
Template instantiation is the substitution of actual data types for
type parameters. For example, in

int a = get_max(3, 4);

the type int is substituted for T. So:
template<typename T>
T get_max(const T &left, const T &right) {

if (left > right) { return left; }
else { return right; }

}

// instantiated with T=int
int get_max(const int &left, const int &right) {

if (left > right) { return left; }
else { return right; }

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

4. Can we separate declaration and definition when using
templates?

It is possible to separate the declaration and definition of template
functions and classes.

However, this is more complicated and less flexible than just putting
the definition of the template function or class in a header file.

The compiler doesn’t normally instantiate a teemplate function or
class until the function or class is actually used. To instantiate the
function or class, the compiler needs the definition.

So, we generally put the definitions for template functions and
classes directly in a header file.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

5. Why shouldn’t template definitions be in .cpp files?

Template functions (including member functions of template
classes) can’t be compiled into machine code and put into an object
(.o) file.

The basic problem is that there are an infinite number of possible
ways a template function or class could be instantiated. For
example, vector<int>, vector<string>, vector<YourClass>,
etc. The compiler doesn’t know which instantiations your program
will need until it actually sees the code that uses vector, and
knows which types will be substituted for vector’s type parameter.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

“.inc” files
One way to allow template function definitions to be separated from
a template class declaration, but still be available from a header file,
is to use an “.inc” file. The .inc file contains the definitions of
member functions of the template class. The header file would look
like this:

#ifndef MY_SET_H
#define MY_SET_H

template<typename T>
class my_set {

// declarations of member functions of my_set<T>
};

#include "my_set.inc"

#endif // MY_SET_H
601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 31

• Convert your int_set class from Exercise 30 to a template
class

• Note that ex30-sol (Exercise 30 reference solution) has been
added to the public repo, git pull to get it

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions!

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Day 32 recap questions

1 Do derived classes inherit constructors?
2 What does protected imply for a class field?
3 What is polymorphism?
4 What is the purpose of the virtual keyword?
5 Can a child class have multiple parents?

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

1. Do derived classes inherit constructors?
No. Each derived class must define its own constructors. These will
call one of the base class’s constructors in its initializer list.

// example base class
class Point2D {
private:

double x, y;

public:
Point2D() : x(0.0), y(0.0) { }
Point2D(double x, double y)

: x(x), y(y) { }
double get_x() const { return x; }
double get_y() const { return y; }

};

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Derived class, constructors

// derived class
class Point3D : public Point2D {
private:

double z;

public:
Point3D() : Point2D(), z(0.0) { }
Point3D(double x, double y, double z)

: Point2D(x, y)
, z(z) { }

double get_z() const { return z; }
};

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Picture of Point2D and Point3D objects

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

2. What does protected imply for a class field?

A protected member may be directly accessed by code in derived
classes, but may not be accessed by code in “unrelated” classes or
functions.

Opinion: It is never really necessary to make a member function
protected. Derived classes can (and should) use public getter and
setter functions to access private data values in the base class.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

3. What is polymorphism?
Polymorphism is the phenomenon that anywhere in a program that
there is either a pointer to a base class type or a reference to a base
class type, that pointer or reference could really refer to an object
that is an instance of a class derived from the base class type.

E.g.:

public class Dog : public Animal { ... };
public class Cat : public Animal { ... };
public class Owl : public Animal { ... };

void do_stuff(Animal &a) {
// the reference could refer to a Dog, Cat, or Owl object,
// or an instance of any class deriving from Animal

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

4. What is the purpose of the virtual keyword?

The virtual keyword marks a member function that can be
overridded by a derived class. This allows the derived class to
provide its own behavior for that member function.

A base class will usually have at least one virtual member function.
The idea is that virtual member functions in the base class define
common operations which can be implemented by derived classes
with varying behavior.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Example base class with a virtual member function

// base class with a virtual member function representing
// a common operation
class Animal {
public:

virtual void vocalize() { cout << "?\n"; }
// ...

};

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Example derived classes overriding a virtual member
function

class Dog : public Animal {
public:

virtual void vocalize() { cout << "woof\n"; }
// ...

};

class Cat : public Animal {
virtual void vocalize() { cout << "meow\n"; }
// ...

};

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Polymorphism!

void stuff(Animal &a) {
a.vocalize();

}

int main() {
Dog leo;
Cat ingo;

stuff(leo); // prints "woof"
stuff(ingo); // prints "meow"

}

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

5. Can a child class have multiple parents?

Yes. However, this is a feature that is not used very widely.

One example: the iostream type inherits from both istream and
ostream.

Since stringstream inherits from iostream, this explains why
you can both read data from a stringstream and also write data
to a stringstream.

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Exercise 32

• Practice with examples of classes using inheritance and
virtual member functions

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions!

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 19 (July 17th)

