
601.220 Intermediate Programming

Summer 2023, Meeting 18 (July 14th)

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Today’s agenda

• Review exercises 27 and 28
• Day 29 recap questions
• Exercise 29
• Day 30 recap questions
• Exercise 30

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Reminders/Announcements

• HW7 is due Thursday, July 20st
• We will have covered everything you need to know for the

CTrie class as of today
• The TTrie class is a template class: we will cover template

classes and functions on Monday
• Final project team formation

• Submit the Google form in Piazza post 218 (pinned) by 11 am
on Tuesday (July 18th)

• If you aren’t registered as being on a team by Wednesday (July
19th) you will be assigned to a team

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 27 review
Part 2: mean and median functions

double GradeList::mean() {
assert(!grades.empty());
double sum = 0.0;
for (std::vector<double>::const_iterator i = grades.cbegin();

i != grades.cend();
++i) {

sum += *i;
}
return sum / grades.size();

}

double GradeList::median() {
return percentile(50.0);

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 27 review

Part 3: in main2.cpp:

GradeList gl;

double min_so_far = 100.0;
for (size_t i = 0; i < gl.grades.size(); i++) {

if (gl.grades[i] < min_so_far) {
min_so_far = gl.grades[i];

}
}

This does not work because grades is a private member of
GradeList, so a main function (which is not a member of
GradeList) cannot access it directly.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 27 review

Part 3: one possible solution is

// in grade_list.h (adding new public member functions)

size_t get_num_grades() const { return grades.size(); }
double get_grade(size_t i) const { return grades[i]; }

// in main2.cpp

double min_so_far = 100.0;
for (size_t i = 0; i < gl.get_num_grades(); i++) {

if (gl.get_grade(i) < min_so_far) {
min_so_far = gl.get_grade(i);

}
}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 27 review

Another possible solution: add to grade_list.h (in GradeList
class)

const std::vector<double> &get_grades() const
{ return grades; }

In main2.cpp, change gl.grades to gl.get_grades().

Arguably, this doesn’t violation encapsulation because a const
reference can’t be used to modify the internal data of the
GradeList object. However, it does result in “leaking” the
knowledge that the grades in a GradeList are stored in a
std::vector<double>.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 27 review

// Part 4 (main3.cpp)
#include <iostream>
#include "grade_list.h"

int main() {
GradeList gl;
for (int i = 0; i <= 100; i += 2) {

gl.add(double(i));
}
std::cout << "Minimum: " << gl.percentile(0.0) << std::endl;
std::cout << "Maximum: " << gl.percentile(100.0) << std::endl;
std::cout << "Median: " << gl.median() << std::endl;
std::cout << "Mean: " << gl.mean() << std::endl;
std::cout << "75th percentile: " << gl.percentile(75.0) << std::endl;

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

// GradeList constructor
GradeList::GradeList(int capacity)

: grades(new double[capacity])
, capacity(capacity)
, count(0) {

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

// GradeList add member function
void GradeList::add(double grade) {

if (count >= capacity) {
double *expanded = new double[capacity * 2];
for (int i = 0; i < count; i++) {

expanded[i] = grades[i];
}
delete[] grades;
grades = expanded;
capacity *= 2;

}
grades[count++] = grade;

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

// GradeList add (many) function
void GradeList::add(int howmany, double *grades) {

for (int i = 0; i < howmany; i++) {
add(grades[i]);

}
}

// GradeList clear function
void GradeList::clear() {

delete[] grades;
grades = new double[1];
capacity = 1;
count = 0;

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

Memory leak reported by valgrind:
==4874==
==4874== HEAP SUMMARY:
==4874== in use at exit: 64 bytes in 1 blocks
==4874== total heap usage: 9 allocs, 8 frees, 74,016 bytes allocated
==4874==
==4874== LEAK SUMMARY:
==4874== definitely lost: 64 bytes in 1 blocks
==4874== indirectly lost: 0 bytes in 0 blocks
==4874== possibly lost: 0 bytes in 0 blocks
==4874== still reachable: 0 bytes in 0 blocks
==4874== suppressed: 0 bytes in 0 blocks
==4874== Rerun with --leak-check=full to see details of leaked memory

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

Adding a destructor:

// in grade_list.h (in the GradeList class definition)

~GradeList();

// in grade_list.cpp

GradeList::~GradeList() {
delete[] grades;

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

main2.cpp requires a default constructor:

// in grade_list.h

GradeList();

// in grade_list.cpp

GradeList::GradeList()
: grades(new double[1])
, capacity(1)
, count(0) {

}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 28 review

// begin() and end() functions can be defined in grade_list.h

double *begin() { return grades; }
double *end() { return grades + count; }

Pointers can be used as iterators because they support the essential
operations (dereference, advance using ++, == and != to compare)
required for iterator values.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Day 29 recap questions

1 What is overloading in C++?
2 Can you overload a function with the same name, same

parameters, but different return type?
3 Is it true that we can overload all the operators of a class?
4 What is a copy constructor? When will it be called?
5 What happens if you don’t define a copy constructor?
6 What is the friend keyword? When do we use it?

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

1. What is overloading in C++?

Overloading means definine two or more functions (or member
functions) with the same name.

This is allowed as long as the overloaded variables can be
distinguished by number and/or types of parameters, or by
const-ness.

Note that you used overloading in exercise 28: there were two add
member functions in the GradeList class.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

2. Can you overload a function with the same name, same
parameters, but different return type?

No. Overloaded variants must be distinguishable by their
argument(s) or constness.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

3. Is it true that we can overload all the operators of a
class?

Mostly. You can’t overload the “.” (member selection) or “::”
(scope resolution) operators. All other operators may be overloaded.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

4. What is a copy constructor? When will it be called?
A copy constructor initializes an object by copying data from
another object of the same type.

E.g.:
std::string s("hello");

std::string s2(s); // initialized using std::string's copy ctor
std::string s3 = s; // initialized using std::string's copy ctor

The copy constructor is called any time an instance of a class needs
to be initialized by copying an object of the same type. This
includes passing an object to a function by value, and (maybe!)
when returning an object from a function by value.

(It’s possible for the compiler to use “return value optimization” so
that an object returned by value is constructed in the caller’s stack
frame, without the need for copying.)

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

5. What happens if you don’t define a copy constructor?

The compiler will generate a copy constructor automatically if one
isn’t explicitly defined.

The compiler-generated copy constructor will copy field values in
order. (This is known as “member-wise” copying.)

Note: if the class has a non-trivial destructor (e.g., the destructor
deallocates dynamic memory), member-wise copying in the copy
constructor will result in serious program bugs. We’ll discuss this in
a bit.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

6. What is the friend keyword? When do we use it?

The friend keyword allows a non-member function to be granted
access to private members of a class.

It’s occasionally useful for things like stream insertion and extraction
(<< and >>), which can’t be class members, but may need to access
the internal data representation of an object.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 29

• Complex class to represent complex numbers
• Overload operators to do arithmetic
• Overloaded stream insertion operator (<<), as a friend
function

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have questions!

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Day 30 recap questions

1 What is difference between initialization and assignment?
2 Does the line f2 = f1; use initialization or assignment
(assume Foo is a class and f1 and f2 are both of type Foo)?

3 Does the line Foo f2 = f1; use initialization or assignment
(assume Foo is a class and f1 is of type Foo)?

4 What is a shallow copy and what is a deep copy?
5 What is the rule of 3?

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

1. What is difference between initialization and
assignment?

Initialization: a constructor is called when an object’s lifetime
begins.

Assignment: the = operator (assignment) is used to assign new data
to an existing object, replacing its current contents.

Examples:

std::string s("hello"); // initialization of s

std::string s2 = "hello again"; // initialization of s2
std::string s3; // initialization of s3

// using default ctor
s3 = s; // assignment to s3

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

2. Does the line f2 = f1; use initialization or assignment
(assume Foo is a class and f1 and f2 are both of type
Foo)?

Assignment. It is not a variable declaration of f2, so f2 has already
been initialized.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

3. Does the line Foo f2 = f1; use initialization or
assignment (assume Foo is a class and f1 is of type Foo)?

Initialization. This is a variable declaration of f2, and f1 is being
provided as the initial value, so the copy constructor is called to
initialize f2 with f1’s contents.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

4. What is a shallow copy and what is a deep copy?
Deep copy: replicate dynamically-allocated objects/arrays.

Shallow copy: just copy pointers to dynamically-allocated
objects/arrays.

Example class:

cass CBuf {
private:

char *buf; int capacity;
pubic:

CBuf(int capacity)
: buf(new char[capacity]), capacity(capacity) { }

CBuf(const CBuf &other); // copy ctor
// ...other member functions...

};

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Copy constructor using deep copy

CBuf::CBuf(const CBuf &other)
: buf(new char[other.capacity])
, capacity(other.capacity) {
for (int i = 0; i < capacity; i++) {

buf[i] = other.buf[i];
}

}

The new object will have its own dynamically-allocated array,
distinct from the original object.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Copy constructor using shallow copy

CBuf::CBuf(const CBuf &other)
: buf(other.buf), capacity(other.capacity) {

}

Shallow copy means two objects have pointers to the same
dynamically-allocated array. If one object modifies the array, the
changes are visible in the other object (because they are “sharing”
the array.) Also: which object’s constructor should delete it?

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Shallow copy vs. deep copy

Shallow copy tends to be problematic because either

• Multiple objects try to deallocate the dynamic memory (double
free, a serious memory error)

• No object tries to deallocate the dynamic memory (memory
leak, also a fairly serious bug)

If you are implementing a class that manages dynamic memory, the
copy constructor and assignment operator should do deep copy.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

5. What is the rule of 3?

If a class has a non-trivial destructor (e.g., the destructor deletes a
dynamically-allocated object or array), then it also needs

• a copy constructor
• an assignment operator

Both of these should do a deep copy.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Disabling value semantics

Alternately: a class with a nontrivial destructor could prohibit the
copy constructor and assignment operator from being used by
defining them in the class definition as private, and then not
defining them.

The disadvantage of this approach is that the class will not have
value semantics. So you can’t copy, assign, pass by value, return by
value, etc.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

A subtle issue with assignment

Consider the following assignment operator:

CBuf &CBuf::operator=(const CBuf &rhs) {
delete[] buf;
buf = new char[rhs.capacity];
capacity = rhs.capacity;
for (int i = 0; i < capacity; i++) {

buf[i] = rhs.buf[i];
}
return *this;

}

Can you spot the problem? (It is very subtle.)

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Guarding against self-assignment

We can’t rule out the possibility that an object might be assigned to
itself!

While this (probably) wouldn’t happen explicitly, it could happen
fairly easily because of references:

void foo(CBuf &a, CBuf &b) {
if (/* some condition */) {

a = b; // do we really know that a and b
// refer to different objects?

}
}

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Buggy version of assignment operator

CBuf &CBuf::operator=(const CBuf &rhs) {
delete[] buf;
buf = new char[rhs.capacity];
capacity = rhs.capacity;
for (int i = 0; i < capacity; i++) {

buf[i] = rhs.buf[i];
}
return *this;

}

Think about what happens when rhs and *this are the same
object. The character array is deleted, but then we try to copy data
from the uninitialized newly-allocated character array.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Fixing the bug
CBuf &CBuf::operator=(const CBuf &rhs) {

if (this != &rhs) {
delete[] buf;
buf = new char[rhs.capacity];
capacity = rhs.capacity;
for (int i = 0; i < capacity; i++) {

buf[i] = rhs.buf[i];
}

}
return *this;

}

Now the assignment properly does nothing if rhs and *this are
the same object.

You should get into the habit of using this idiom when you
implement assignment operators.

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Exercise 30

• Linked list impementation in C++
• Implementation of copy constructor and assignment operator
using deep copy

• Breakout rooms 1–10 are “social”
• Use Slack to let us know if you have a question!

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

Notes

601.220 Intermediate Programming Summer 2023, Meeting 18 (July 14th)

