
601.220 Intermediate Programming

Summer 2023, Meeting 6 (June 16th)

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Today’s agenda

• Exercises 9 and 10 review
• “Day 11” material

• Dynamic memory allocation, Valgrind
• Exercise 11

• “Day 12” material
• Pointer arithmetic, “dynamic” 2-D arrays
• Exercise 12

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Reminders/Announcements

• HW3 due Thursday, June 22nd
• Midterm project information

• Fill out registration form for midterm projects before Monday
June 19th at 6pm.

• https://forms.gle/3uCinQB2wFh4aVgY6 - see piazza
• Only one member of the group needs to fill out the form.
• Students who don’t have a team or don’t fill out the form will

randomly be assigned to a group.
• Team repositories and midterm project instructions will be
released on Tuesday morning.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)

https://forms.gle/3uCinQB2wFh4aVgY6


Exercise 9 review

• Good first step in debugging a program: break main
• This gives you control at the very beginning of main

• Use next (n) to advance to the next statement
• Use step (s) to step into a called function

• Very important if a function is misbehaving

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 9 review

To debug effectively, you need a hypothesis about what is going
wrong.

For the transpose function, start with the observation that the
print function doesn’t print the entire contents of the destination
array.

Use print (p) to inspect the values of variables, array elements, etc.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 9 review

Next issue: the transpose function doesn’t seem to correctly
transpose the elements in the original array.

Step into the call to transpose.

Inspect “shape” and contents of the two arrays:

print start[0]
print start[1]
print start[2]

Look carefully at the code at line 13 (do tthe array subscripts make
sense?)

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 9 review - Debuggers are not magic.
They will not tell you what’s wrong with your code. . . because they
have no idea what your code is supposed to do!

They are very useful for seeing what your code is actually doing:
they help make the internal state of the program visible.

Pro tip: learn how to set breakpoints:

• break functionName
• break sourceFileName:lineNumber

Use the continue (c) command to run the program until the next
breakpoint is reached.

• Advice! Don’t overdepend on debuggers on your day to day as
developers. The best solution against bugs is to write high
quality and well thought code.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 10 review

Important application of pointers: pass by reference semantics for
normal variables.

(Arrays are always passed by reference, but ordinary variables are
passed by value by default.)

Remember: variables store data and pointers store addresses!

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 10 review

getDate function:

int getDate(int *m, int *d, int *y) {
int month, day, year;
int rc = scanf("%d/%d/%d", &month, &day, &year);
if (rc == 3) {

*m = month;
*d = day;
*y = year;

}
return rc;

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 10 review

months array:

const char *months[] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

Calling getDate from main:

printf("Enter a date: ");
while (getDate(&mon, &day, &yr) == 3) {

printf("%s %d, %d\n", months[mon-1], day, yr);
printf("Enter a date: ");

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 10 review

Even more concise version of getDate:

int getDate(int *m, int *d, int *y) {
return scanf("%d/%d/%d", m, d, y);

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



A buggy program:

Can anybody identify whats wrong in this program?
#include <stdio.h>

int getDate(int *m, int *d, int *y) {
return scanf("%d/%d/%d", &m, &d, &y);

}

int main()
{

int month,day, year;
getDate(&month, &day,&year);
printf("%d %d %d\n", month, day, year );
return 0;

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Day 11 recap questions

1 What is the difference between stack and heap memory?
2 What is dynamic memory allocation in C?
3 What is the memory leak problem?
4 What is the difference between malloc, realloc, and calloc?
5 What do we use valgrind to check for?
6 Consider the exclaim function below. Do you see any

problems with this function?

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



The c memory layout

Taken from https://static.javatpoint.com/cpages/images/memory-
layout-in-c.png

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)

https://static.javatpoint.com/cpages/images/memory-layout-in-c.png
https://static.javatpoint.com/cpages/images/memory-layout-in-c.png


1. What is the difference between stack and heap memory?
Stack memory: used for local variables, parameters, and other data
required by an in-progress function call.

Key characteristic: the lifetime of local variables and parameters is
limited to the duration of the function call for which they are
allocated. (Storage for local variables, parameters, etc. is allocated
automatically in a stack frame created when a function is called.)

Heap memory: chunks of memory can be allocated in a dedicated
region of memory (the “heap”).

Key characteristic: the lifetime of variables allocated in the heap is
under the explicit control of the program. (I.e., the program decides
when a dynamically allocated variable is no longer needed.)

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



2. What is dynamic memory allocation in C?
The program uses malloc (or calloc, or realloc) to dynamically
allocate a chunk of memory of a specified size. The program can
then use the chunk as a single variable, an array, etc. For example:

// dynamically allocate an array of 10 int elements
int *arr = (int *) malloc(10 * sizeof(int));
for (int i = 0; i < 10; i++) {

arr[i] = (i + 1);
}

Dynamically allocated memory must be explicitly de-allocated with
free when the program no longer needs it:

free(arr);

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



3. What is the memory leak problem?
If a program dynamically allocates memory but does not free it, it
continues to exist in the heap.

The maximum amount of memory which can be allocated in the
heap is finite, so a program that repeatedly allocates memory
without freeing it could eventually exhaust the heap, which would
cause subsequent attempts to allocate memory to fail.

Programs must take care to de-allocate dynamically allocated
memory after the last use.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



4. What is the difference between malloc, realloc, and
calloc?

malloc: dynamically allocate block of memory of specified size.

calloc: like malloc, but contents are filled with zeroes (useful for
arrays, guarantees that all elements are 0.)

realloc: attempt to reallocate an existing chunk of memory.
Reallocation could be done “in place”, or could involve allocating a
new chunk of memory and copying the contents of the original block
of memory.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



5. What do we use valgrind to check for?
valgrind can check for:

1 Memory leaks (detected when the program exist)
2 Memory errors, such as

• out of bounds array accesses
• use of an uninitialized value
• access to heap memory not currently in use (e.g., dereferencing
a pointer to a de-allocated block of dynamically allocated
memory)

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Why valgrind is useful
Testing your program regularly using valgrind is incredibly helpful!

• Just because your program “works” when you run it, doesn’t
mean that it is free from bugs

• The kinds of bugs valgrind finds often lead to subtle data
corruptions that can be difficult to track down by other means

Use it!

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



6. Consider the exclaim function below. Do you see any
problems with this function?

The code:

char* exclaim(int n) {
char s[20];
assert(n < 20);
for (int i = 0; i < n; i++) {

s[i] = '!';
}
s[n] = '\0';
return s;

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 11

• Dynamic allocation
• Using valgrind to detect memory leaks and other memory
errors

• Pointers to pointers
• Breakout rooms 1–10 are “social”
• Use Slack to ask for help!

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Day 12 recap questions

1 What output is printed by the “Example code” below?
2 Assume that arr is an array of 5 int elements. Is the code

int *p = arr + 5; legal?
3 Assume that arr is an array of 5 int elements. Is the code

int *p = arr + 5; printf("%d\n", *p); legal?
4 What output is printed by the “Example code 2” below?
5 Suppose we have variables int ra1[10] = {1, 2, 3};, int

* ra2 = ra1; and int fun(int *ra); declarations. Will
fun(ra1); compile? Will fun(ra2); compile? What if we
change the function declaration to int fun(const int
ra[]);?

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



1. What output is printed by the “Example code” below?
int arr[] = { 94, 69, 35, 72, 9 };
int *p = arr;
int *q = p + 3;
int *r = q - 1;
printf("%d %d %d\n", *p, *q, *r);
ptrdiff_t x = q - p;
ptrdiff_t y = r - p;
ptrdiff_t z = q - r;
printf("%d %d %d\n", (int)x, (int)y, (int)z);
ptrdiff_t m = p - q;
printf("%d\n", (int)m);
int c = (p < q);
int d = (q < p);
printf("%d %d\n", c, d);

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



2. Assume that arr is an array of 5 int elements. Is the
code int *p = arr + 5; legal?

Yes. It uses pointer arithmetic to compute a pointer 5 elements past
the first element of arr.

Note that it would not be legal to dereference this pointer.

Why such a pointer might be useful: as an upper bound for a loop
using a pointer to iterate through the elements of arr. E.g.:

int *p = arr + 5;
int sum = 0;
for (int *q = arr; q < p; q++) {

sum += *q;
}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



3. Assume that arr is an array of 5 int elements. Is the
code int *p = arr + 5; printf("%d\n", *p); legal?

No. p doesn’t point to a valid array element, so dereferencing it is
undefined behavior.

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



4. What output is printed by the “Example code 2” below?
#include <stdio.h>

int sum(int a[], int n) {
int x = 0;
for (int i = 0; i < n; i++) {

x += a[i];
}
return x;

}

int main(void) {
int data[] = { 23, 59, 82, 42, 67, 89, 76, 44, 85, 81 };
int result = sum(data + 3, 4);
printf("result=%d\n", result);
return 0;

}

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



5. Suppose we have variables int ra1[10] = {1, 2,
3};, int * ra2 = ra1; and int fun(int *ra);
declarations. Will fun(ra1); compile? Will fun(ra2);
compile? What if we change the function declaration to
int fun(const int ra[]);?

Yes, the name of an array of int elements will “decay” into a
pointer to the first element of the array if used without the subscript
operator.

Yes, ra2 is a poiner to int, which is the type of argument expected
by fun.

Yes, a pointer to int can be passed to a function expecting pointer
to const int. (Note that it’s not allowed to pass a pointer to
const int to a function expecting a pointer to (non-const) int.)

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Exercise 12

• Using poiner arithmetic to treat regions of arrays as
“sub-arrays”

• Using pointer difference to translate a pointer to an element
into the element’s index (by subtracting the “base pointer”,
i.e., the pointer to the first element)

• Breakout rooms 1–10 are “social”
• Use Slack to ask for help!

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Notes

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Notes

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Notes

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Notes

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)



Notes

601.220 Intermediate Programming Summer 2023, Meeting 6 (June 16th)


