
601.220 Intermediate Programming

Writing iterators

601.220 Intermediate Programming Writing iterators



Linked list of ints

// ListNode.h:
#include <iostream>

class ListNode {
public:

ListNode(int val, ListNode *nxt) : data(val), next(nxt) {}

// private: //usually private but public for this example
int data;
ListNode *next;

};

601.220 Intermediate Programming Writing iterators



Linked list of ints

// ListDriver.cpp:

#include <iostream>
#include <string>
#include "ListNode.h"

int main() {

ListNode l3(3, nullptr);
ListNode l2(2, &l3);
ListNode l1(1, &l2);

//Run through all items in list, output them one by one
for (ListNode* cur = &l1; cur != nullptr; cur = cur->next) {

std::cout << cur->data << " ";
}

}

$ g++ -std=c++11 -Wall -Wextra -pedantic ListDriver.cpp
$ ./a.out
1 2 3

601.220 Intermediate Programming Writing iterators



MyVector class example

// MyVector.h:
#include <iostream>
#include <string>

class MyVector {
public:

MyVector(): data(new int[5]), capacity(5), num_elts(0) { }
void add(int item);

// private: //but public for this example
int* data;
int capacity;
int num_elts;

};

void MyVector::add(int item) {
if (num_elts >= capacity) {

/* then double the size of the array - code not shown */
}
data[num_elts++] = item;

}

601.220 Intermediate Programming Writing iterators



MyVector class example

// MyVectorDriver.cpp:

#include <iostream>
#include "MyVector.h"

int main() {

MyVector v = MyVector();
v.add(1);
v.add(2);
v.add(3);

//Run through all items in list, output them one by one
for (int i = 0; i != v.num_elts; i++) {

std::cout << v.data[i] << " ";
}

}

$ g++ -std=c++11 -Wall -Wextra -pedantic MyVectorDriver.cpp
$ ./a.out
1 2 3

601.220 Intermediate Programming Writing iterators



Iterating over containers is common

• In both classes, we needed to loop over all elements in the “list”
• In our example, we printed items, but we might have been, say,

searching for a value

• Code to “run through all elements” looks very different (cur
pointer that advances through linked list vs. for loop over
integer indices of vector)

• C++ iterators unify these different code segments
• Regardless of the container specifics, an iterator feels like a

pointer to successive individual elements, that we can easily
advance

601.220 Intermediate Programming Writing iterators



Iterators

• We use an iterator over a container to traverse elements in
the container in order from beginning to end

• A reverse_iterator can be used to traverse elements in a
backwards direction

• A const_iterator is an iterator which promises not to
modify individual elements as it progresses through them

601.220 Intermediate Programming Writing iterators



How can we define our own iterator for a custom class?

• Suppose we write a new container class from scratch to
represent, say, a deck of cards.

• It would be nice to have an iterator for the deck!
• Let’s write one. . .

601.220 Intermediate Programming Writing iterators



How can we define our own iterator?

• Is an iterator really just a pointer?
• A pointer might work for a container where elements are laid

out contigulously in memory, e.g. for an array
• But a pointer doesn’t work well for say, std::map. How would
++it advance properly?

• Instead, we actually define an entirely new class to represent an
iterator. . .

601.220 Intermediate Programming Writing iterators



Using a nested class to define an iterator

• We can write our own iterator (or const_iterator or
reverse_iterator) as a nested class inside the container
class

• A nested class sits inside another class definition, and has
access to the members of the enclosing class, including private
members

• For our purposes, we don’t need access to the private members;
each iterator class simply wraps a layer of operator overloads
around a pointer

601.220 Intermediate Programming Writing iterators



How do we use an iterator?

Suppose we want to output the elements in some container c:

for (MyContainerType::iterator it = c.begin();
it != c.end();
++it) {

//*it can now be used to refer to each successive element
std::cout << *it << " ";

}

601.220 Intermediate Programming Writing iterators



What operators does our iterator class need to overload?

Minimally:

• inequality:
• operator!=

• dereference:
• operator*

• preincrement:
• operator++

That’s all we need for today, but a real-world iterator might
additionally handle:

• equality: operator==
• arrow (for class member access): operator->

601.220 Intermediate Programming Writing iterators



Implementing an iterator, continued

• Our enclosing (container) class should then also define
methods named begin and end, which return iterators to the
first item in the collection, and the just-past-last element in the
collection, respectively

601.220 Intermediate Programming Writing iterators



Other types of iterators

• What would need to be different for a const_iterator?
• Hint: definition of operator* needs to change

• What would need to be different for a reverse_iterator?
• Hint: definition of operator++ needs to change, begin and end

too

601.220 Intermediate Programming Writing iterators


