
601.220 Intermediate Programming

Enumerated types

601.220 Intermediate Programming Enumerated types



Enumeration (unscoped)

• an enumeration is a distinct type whose value is restricted to a
range of values

• an enum can include several explicitly named constants
(“enumerators”)

• the values of the constants are integer numbers

enum Color { red, green, blue }; // an unscoped enum
Color r = red;
switch(r)
{

case red : std::cout << "red\n"; break;
case green: std::cout << "green\n"; break;
case blue : std::cout << "blue\n"; break;

}

601.220 Intermediate Programming Enumerated types



Enumeration (unscoped)

• each enumerator is associated with a value of the underlying
type:

enum Foo { a, b, c = 10, d, e = 1, f, g = f + c };
//a = 0, b = 1, c = 10, d = 11, e = 1, f = 2, g = 12

• the values can be converted to their underlying type:

enum color { red, yellow, green = 20, blue };
color col = red;
int n = blue; // n == 21

• you can specify the underlying type explicitly:

enum color : char { red, yellow, green = 20, blue };

601.220 Intermediate Programming Enumerated types



Enumeration (scoped)
• declaring a scoped enumeration type whose underlying type is
int (the keywords class and struct are exactly equivalent)

enum struct|class name { enumerator = constexpr ,
enumerator = constexpr , ... }

• example:

enum class Color { red, green = 20, blue };
Color r = Color::blue;
switch(r)
{

case Color::red : std::cout << "red\n"; break;
case Color::green: std::cout << "green\n"; break;
case Color::blue : std::cout << "blue\n"; break;

}

601.220 Intermediate Programming Enumerated types



Enumeration (scoped)

• the values can also be converted to their underlying type but
explicitly:

enum class Color { red, yellow, green = 20, blue };
Color col = Color::red;
int n = Color::blue; // NOT OK
int m = (int) Color::blue; // OK
int l = static_cast<int>(Color::blue); // OK

• you can also specify the underlying type:

enum class Color : char { red, yellow, green = 20, blue };

601.220 Intermediate Programming Enumerated types



Enumeration - unscoped vs scoped
Unscoped enum type could be misused:
enum Color { red, yellow, blue };
enum MyColor { myblue, myyellow, myred };
Color col = red;
if (col == myred) { // Should it be true?

...
}

Color shouldn’t be compared with MyColor. You will see a compiler
warning, but the expression is allowed (because implicitly converted
to the underlying type.)

Use scoped enum to avoid this:
enum class Color { red, yellow, blue };
enum class MyColor { myblue, myyellow, myred };
Color col = Color::red;
if (col == MyColor::myred) { // Compiler will give you an error here!

...
}

601.220 Intermediate Programming Enumerated types



Enumeration
Why don’t we just use int?
int return_code = some_processing();
switch (return_code) {

...
case 97: // do something for case 97
case 98: // do something for case 98
...

}

comparing to
enum class ReturnCode = { ... , RECEIVED_TWICE = 97, NOT_RECEIVED = 98, ... };
ReturnCode return_code = some_processing();
switch (return_code) {

...
case ReturnCode::RECEIVED_TWICE: // do something when received twice
case ReturnCode::NOT_RECEIVED: // do something when not received
...

}

Which one is easier to understand?
601.220 Intermediate Programming Enumerated types


