
601.220 Intermediate Programming

Virtual destructors

601.220 Intermediate Programming Virtual destructors

Virtual destructors

// virt_dtor.h:
class Base {
public:

Base() : base_memory(new char[1000]) { }

~Base() { delete[] base_memory; }

private:
char *base_memory;

};

class Derived : public Base {
public:

Derived() : Base(), derived_memory(new char[1000]) { }

~Derived() { delete[] derived_memory; }

private:
char *derived_memory;

};

601.220 Intermediate Programming Virtual destructors

Virtual destructors
// virt_dtor.cpp:
#include "virt_dtor.h"

int main() {
// Note use of base-class pointer
Base *obj = new Derived();
delete obj; // calls what destructor(s)?
return 0;

}

new Derived() calls Derived default constructor, which in turn
calls Base default constructor; that’s good

Which destructor is called?

• Destructor is not virtual
• Does that mean ~Base is called but not ~Derived?

601.220 Intermediate Programming Virtual destructors

Virtual destructors
$ g++ -o virt_dtor virt_dtor.cpp
$ valgrind ./virt_dtor
==13202== Memcheck, a memory error detector
==13202== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13202== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==13202== Command: ./virt_dtor
==13202==
==13202==
==13202== HEAP SUMMARY:
==13202== in use at exit: 1,000 bytes in 1 blocks
==13202== total heap usage: 4 allocs, 3 frees, 74,720 bytes allocated
==13202==
==13202== LEAK SUMMARY:
==13202== definitely lost: 1,000 bytes in 1 blocks
==13202== indirectly lost: 0 bytes in 0 blocks
==13202== possibly lost: 0 bytes in 0 blocks
==13202== still reachable: 0 bytes in 0 blocks
==13202== suppressed: 0 bytes in 0 blocks
==13202== Rerun with --leak-check=full to see details of leaked memory
==13202==
==13202== For lists of detected and suppressed errors, rerun with: -s
==13202== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

~Derived is not called; derived_memory is leaked

601.220 Intermediate Programming Virtual destructors

Virtual destructors

// virt_dtor2.h:
class Base {
public:

Base() : base_memory(new char[1000]) { }

// Now *** virtual ***
virtual ~Base() { delete[] base_memory; }

private:
char *base_memory;

};

class Derived : public Base {
public:

Derived() : Base(), derived_memory(new char[1000]) { }

// Now *** virtual ***
virtual ~Derived() { delete[] derived_memory; }

private:
char *derived_memory;

};

601.220 Intermediate Programming Virtual destructors

Virtual destructors

// virt_dtor2.cpp:
#include "virt_dtor2.h"

int main() {
// Note use of base-class pointer
Base *obj = new Derived();
delete obj; // calls what destructor(s)?
return 0;

}

601.220 Intermediate Programming Virtual destructors

Virtual destructors
$ g++ -o virt_dtor2 virt_dtor2.cpp
$ valgrind ./virt_dtor2
==13212== Memcheck, a memory error detector
==13212== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13212== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==13212== Command: ./virt_dtor2
==13212==
==13212==
==13212== HEAP SUMMARY:
==13212== in use at exit: 0 bytes in 0 blocks
==13212== total heap usage: 4 allocs, 4 frees, 74,728 bytes allocated
==13212==
==13212== All heap blocks were freed -- no leaks are possible
==13212==
==13212== For lists of detected and suppressed errors, rerun with: -s
==13212== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Fixed; thanks to dynamic binding, delete obj calls ~Derived,
which in turn calls ~Base

Derived-class destructor always implicitly calls base-class destructor
at the end

601.220 Intermediate Programming Virtual destructors

Virtual destructors

To avoid this in general: Any class with virtual member functions
should also have a virtual destructor, even if the destructor does
nothing

601.220 Intermediate Programming Virtual destructors

Quiz!

Assume class C is derived from classes A and B and class D is
derived from B. At the very least, the destructors of which classes
must be virtual?

A. C and D

B. A and B

C. A, B and C

D. A, B, C and D

E. D only

601.220 Intermediate Programming Virtual destructors

