
601.220 Intermediate Programming

Rule of 3

601.220 Intermediate Programming Rule of 3

An Image class
Image has resources managed by the constructor & destructor:
// image.h:
class Image {

public:
Image(const char *orig, int r, int c) : nrow(r), ncol(c) {

image = new char[r*c];
for(int i = 0; i < nrow * ncol; i++) {

image[i] = orig[i];
}

}

~Image() { delete[] image; }

const char *get_image() const { return image; }
int get_nrow() const { return nrow; }
int get_ncol() const { return ncol; }

void set_pixel(char pix, int row, int col) {
image[row * ncol + col] = pix;

}
private:

char *image; // image data
int nrow, ncol; // # rows and columns

};

std::ostream& operator<<(std::ostream&, const Image&);

601.220 Intermediate Programming Rule of 3

image.cpp

// image.cpp:
#include <iostream>
#include "image.h"

using std::endl;
using std::ostream;

ostream& operator<<(ostream& os, const Image& image) {
for(int i = 0; i < image.get_nrow(); i++) {

for(int j = 0; j < image.get_ncol(); j++) {
os << image.get_image()[i*image.get_ncol()+j] << ' ';

}
os << endl;

}
return os;

}

601.220 Intermediate Programming Rule of 3

image_main.cpp

// image_main.cpp:
#include <iostream>
#include "image.h"
using std::cout; using std::endl;

int main() {
Image x_wins("X-O-XO--X", 3, 3);
cout << x_wins << "** X wins! **" << endl;
return 0;

}

$ g++ -o image_main image_main.cpp image.cpp
$./image_main
X - O
- X O
- - X
** X wins! **

601.220 Intermediate Programming Rule of 3

image_main2.cpp

// image_main.cpp:
#include <iostream>
#include "image.h"

using std::cout; using std::endl;

int main() {
Image x_wins("X-O-XO--X", 3, 3);
Image o_wins = x_wins;
o_wins.set_pixel('O', 2, 2); // set bottom right to 'O'
cout << x_wins << "** X wins! **" << endl << endl;
cout << o_wins << "** O wins! **" << endl;
return 0;

}

601.220 Intermediate Programming Rule of 3

image_main2.cpp

$ g++ -o image_main image_main.cpp image.cpp
$./image_main
X - O
- X O
- - O
** X wins! **

X - O
- X O
- - O
** O wins! **
free(): double free detected in tcache 2
Aborted (core dumped)

Oops, both have O in bottom right corner

o_wins.set_pixel(...) affected both x_wins & o_wins!

601.220 Intermediate Programming Rule of 3

image_main2.cpp
Also: destructor delete[]s the same pointer twice
$ valgrind ./image_main > /dev/null
==12759== Memcheck, a memory error detector
==12759== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==12759== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==12759== Command: ./image_main
==12759==
==12759== Invalid free() / delete / delete[] / realloc()
==12759== at 0x483D74F: operator delete[](void*) (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==12759== by 0x1094B8: Image::~Image() (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759== by 0x10934C: main (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759== Address 0x4dc5c80 is 0 bytes inside a block of size 9 free'd
==12759== at 0x483D74F: operator delete[](void*) (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==12759== by 0x1094B8: Image::~Image() (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759== by 0x109340: main (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759== Block was alloc'd at
==12759== at 0x483C583: operator new[](unsigned long) (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==12759== by 0x10943A: Image::Image(char const*, int, int) (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759== by 0x109281: main (in /space2/daveho/git/cs220-summer22-instructors/slides/source/day30_rule_of_3_files/image_main)
==12759==
==12759==
==12759== HEAP SUMMARY:
==12759== in use at exit: 0 bytes in 0 blocks
==12759== total heap usage: 3 allocs, 4 frees, 76,809 bytes allocated
==12759==
==12759== All heap blocks were freed -- no leaks are possible
==12759==
==12759== For lists of detected and suppressed errors, rerun with: -s
==12759== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

601.220 Intermediate Programming Rule of 3

Initialization & assignment

Image o_wins = x_wins; does shallow copy

• Copies x_wins.image pointer directly into o_wins.image, so
both are using same heap array

• Instead, we want deep copy; o_wins should be a new buffer,
with contents of x_wins copied over

• Want this both for initialization and for assignment

Image x_wins("X-O-XO--X", 3, 3);
Image o_wins = x_wins;

601.220 Intermediate Programming Rule of 3

Rule of 3

Image is an example of a class that manages resources, and
therefore has a non-trivial destructor

Rule of 3: If you have to manage how an object is destroyed, you
should also manage how it’s copied

Rule of 3 (technical version): If you have a non-trivial destructor,
you should also define a copy constructor and operator=

Case in point: Image should be deep copied

601.220 Intermediate Programming Rule of 3

Rule of 3

Copy constructor initializes a class variable as a copy of another

operator= is called when one object is assigned to another

Complex c = {3.0, 2.0}; // non-default constructor
Complex c2 = c; // copy constructor
c = Complex(4.0, 5.0); // non-default ctor for right-hand side

// operator= to copy into left-hand side

601.220 Intermediate Programming Rule of 3

Copy constructor

Copy constructor is called when:

• Initializing:
• Image o_wins = x_wins;
• Image o_wins(x_wins); (same meaning as above)

• Passing by value
• Returning by value

601.220 Intermediate Programming Rule of 3

Copy constructor

Copy constructor for Image:

Image(const Image& o) : nrow(o.nrow), ncol(o.ncol) {
// Do a *deep copy*, similarly to the
// non-default constructor
image = new char[nrow * ncol];
for(int i = 0; i < nrow * ncol; i++) {

image[i] = o.image[i];
}

}

601.220 Intermediate Programming Rule of 3

operator=

operator= is called when assigning one class variable to another

• Except for initialization; copy constructor handles that

Image& operator=(const Image& o) {
delete[] image; // deallocate previous image memory
nrow = o.nrow;
ncol = o.ncol;
image = new char[nrow * ncol];
for(int i = 0; i < nrow * ncol; i++) {

image[i] = o.image[i];
}
return *this; // for chaining

}

It’s a normal member function, not a constructor, so we can’t use
initializer list syntax

601.220 Intermediate Programming Rule of 3

Rule of 3

If you don’t specify copy constructor or operator=, compiler adds
implicit version that shallow copies

• Simply the contents of the fields
• class fields will have their corresponding copy constructors or

operator= functions called
• Pointers to heap memory will simply be copied, without the
heap memory itself being copied

Another way of stating the Rule of 3: if your class has a non-trivial
destructor, you probably don’t want shallow copying

601.220 Intermediate Programming Rule of 3

Rule of 3

When we add the copy constructor and operator= defined above,
we get the expected behavior:

601.220 Intermediate Programming Rule of 3

Rule of 3
// image_fixed.cpp:
#include <iostream>
#include "image_fixed.h"
using std::cout; using std::endl;
int main() {

Image x_wins("X-O-XO--X", 3, 3);
Image o_wins = x_wins;
o_wins.set_pixel('O', 2, 2); // set bottom right to 'O'
cout << x_wins << "** X wins! **" << endl << endl;
cout << o_wins << "** O wins! **" << endl;
return 0;

}

$ g++ -o image_fixed image_fixed.cpp image.cpp
$./image_fixed
X - O
- X O
- - X
** X wins! **

X - O
- X O
- - O
** O wins! **

601.220 Intermediate Programming Rule of 3

Rule of 3

And no complaints from valgrind:
$ valgrind ./image_fixed > /dev/null
==12778== Memcheck, a memory error detector
==12778== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==12778== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==12778== Command: ./image_fixed
==12778==
==12778==
==12778== HEAP SUMMARY:
==12778== in use at exit: 0 bytes in 0 blocks
==12778== total heap usage: 4 allocs, 4 frees, 76,818 bytes allocated
==12778==
==12778== All heap blocks were freed -- no leaks are possible
==12778==
==12778== For lists of detected and suppressed errors, rerun with: -s
==12778== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

601.220 Intermediate Programming Rule of 3

