
601.220 Intermediate Programming

Destructors

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

• new and delete are essentially the C++ versions of malloc
and free

• Big difference: new not only allocates the memory, it also calls
the appropriate constructor if needed

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

// new_eg1.cpp:
#include <iostream>

using std::cout;
using std::endl;

class DefaultSeven {
public:

DefaultSeven() : i(7) { }
int get_i() { return i; }

private:
int i;

};

int main() {
DefaultSeven s;
DefaultSeven *sptr = new DefaultSeven(); // using new
cout << "s.get_i() = " << s.get_i() << endl;
cout << "sptr->get_i() = " << sptr->get_i() << endl;
delete sptr; // free the memory before exiting
return 0;

}

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

$ g++ -std=c++11 -pedantic -Wall -Wextra -c new_eg1.cpp
$ g++ -o new_eg1 new_eg1.o
$./new_eg1
s.get_i() = 7
sptr->get_i() = 7

• new called the default constructor for us in both cases
• delete releases the memory, but we should also set sptr to NULL

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

T * fresh = new T[n] allocates an array of n elements of type T

Use delete[] fresh to deallocate – always use delete[] (not
delete) to deallocate a pointer returned by new T[n]

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

If T is a class, then T’s default constructor is called for each
element allocated

If T is a “built-in” type (int, float, char, etc), then the values
are not initialized, like with malloc

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

// new_eg2.cpp:
#include <iostream>

using std::cout;
using std::endl;

class DefaultSeven {
public:

DefaultSeven() : i(7) { }
int get_i() { return i; }

private:
int i;

};

int main() {
DefaultSeven *s_array = new DefaultSeven[10];
for(int i = 0; i < 10; i++) {

cout << s_array[i].get_i() << " ";
}
cout << endl;
delete[] s_array;
return 0;

}

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

$ g++ -std=c++11 -pedantic -Wall -Wextra -c new_eg2.cpp
$ g++ -o new_eg2 new_eg2.o
$./new_eg2
7 7 7 7 7 7 7 7 7 7

Confirming that default constructor was indeed called for all 10 elements

601.220 Intermediate Programming Destructors

C++ classes: destructors

• A class constructor’s job is to initalize the fields of the object
• It’s common for a constructor to obtain a resource (allocate

memory, open a file, etc) that should be released when the
object is destroyed

• A class destructor is a method called by C++ when the object’s
lifetime ends or it is otherwise deallocated (ie, with delete)

• A destructor’s name is the name of the class prepended with ~,
e.g. ~Rectangle()

• The destructor is always automatically called when object’s
lifetime ends, including when it is deallocated

• It’s a convenient place to clean up

601.220 Intermediate Programming Destructors

C++ classes: destructors
// sequence.h:
#include <cassert>

// What does this class do? Anything wrong with it?
class Sequence {
public:

Sequence() : array(NULL), size(0) { }

// Note: constructor can have both an initializer
// list and statements in its body
Sequence(int sz) : array(new int[sz]), size(sz) {

for(int i = 0; i < sz; i++) {
array[i] = i;

}
}

int at(int i) {
assert(i < size);
return array[i];

}

private:
int *array;
int size;

};

601.220 Intermediate Programming Destructors

C++ classes: destructors

// sequence_main.cpp:
#include <iostream>
#include "sequence.h"

using std::cout;
using std::endl;

int main() {
Sequence seq(10);
for(int i = 0; i < 10; i++) {

cout << seq.at(i) << ' ';
}
cout << endl;
return 0;

}

$ g++ -std=c++11 -pedantic -Wall -Wextra -c sequence_main.cpp -g
$ g++ -o sequence_main sequence_main.o
$./sequence_main
0 1 2 3 4 5 6 7 8 9

601.220 Intermediate Programming Destructors

C++ classes: destructors

valgrind finds a leak!
==12306== HEAP SUMMARY:
==12306== in use at exit: 40,185 bytes in 431 blocks
==12306== total heap usage: 510 allocs, 79 frees, 46,345 bytes allocated
==12306==
==12306== 40 bytes in 1 blocks are definitely lost in loss record 29 of 83
==12306== at 0x100009EAB: malloc (in 3.11.0/lib/valgrind/vgpreload_memcheck-amd64-darwin.so)
==12306== by 0x10004E43D: operator new(unsigned long) (in /usr/lib/libc++.1.dylib)
==12306== by 0x10000130A: Sequence::Sequence(int) (in ./sequence_main)
==12306== by 0x10000111A: Sequence::Sequence(int) (in ./sequence_main)
==12306== by 0x10000107C: main (in ./sequence_main)
==12306==
==12306== LEAK SUMMARY:
==12306== definitely lost: 40 bytes in 1 blocks
==12306== indirectly lost: 0 bytes in 0 blocks
==12306== possibly lost: 0 bytes in 0 blocks
==12306== still reachable: 4,096 bytes in 1 blocks
==12306== suppressed: 36,049 bytes in 429 blocks
==12306== Reachable blocks (those to which a pointer was found) are not shown.
==12306== To see them, rerun with: --leak-check=full --show-leak-kinds=all

601.220 Intermediate Programming Destructors

C++ classes: destructors

Allocates new int[sz] in constructor, but never delete[]s it

It’s common for a constructor to obtain a resource (allocate memory,
open a file, etc) that should be released when the object is destroyed

Destructor is a function called by C++ when the object’s lifetime
ends, or is otherwise deallocated (i.e. with delete)

It’s common for a destructor to release the resource (deallocate
memory, close a file, etc)

601.220 Intermediate Programming Destructors

C++ classes: destructors

// sequence.h:
#include <cassert>

class Sequence {
public:

Sequence() : array(NULL), size(0) { }

Sequence(int sz) : array(new int[sz]), size(sz) {
for(int i = 0; i < sz; i++) {

array[i] = i;
}

}

// *** destructor ****
~Sequence() { delete[] array; }

int at(int i) {
assert(i < size);
return array[i];

}
private:

int *array;
int size;

};

601.220 Intermediate Programming Destructors

C++ classes: destructors

$ g++ -std=c++11 -pedantic -Wall -Wextra -c sequence_main.cpp -g
$ g++ -o sequence_main sequence_main.o
$./sequence_main
0 1 2 3 4 5 6 7 8 9

601.220 Intermediate Programming Destructors

C++ classes: destructors

==12568== HEAP SUMMARY:
==12568== in use at exit: 40,121 bytes in 429 blocks
==12568== total heap usage: 509 allocs, 80 frees, 46,321 bytes allocated
==12568==
==12568== LEAK SUMMARY:
==12568== definitely lost: 0 bytes in 0 blocks
==12568== indirectly lost: 0 bytes in 0 blocks
==12568== possibly lost: 0 bytes in 0 blocks
==12568== still reachable: 4,096 bytes in 1 blocks
==12568== suppressed: 36,025 bytes in 428 blocks
==12568== Reachable blocks (those to which a pointer was found) are not shown.
==12568== To see them, rerun with: --leak-check=full --show-leak-kinds=all

601.220 Intermediate Programming Destructors

C++ classes: destructors

Destructors are nearly always a better option than creating a special member
function for releasing resources; e.g.:

// sequence.h:
#include <cassert>

class Sequence {
public:

...
// User must call clean_up when finished with Sequence
void clean_up() { delete[] array; }
...

};

601.220 Intermediate Programming Destructors

C++ classes: destructors

User forgets to call clean_up:

{
Sequence s(40);
// ... (no call to s.clean_up())

} // s lifetime ends and memory is leaked

More subtly:

{
Sequence s(40);
if (some_condition) {

return 0; // memory leaked!
}
s.clean_up();

}

601.220 Intermediate Programming Destructors

C++ classes: destructors

• Destructor is always automatically called when object’s lifetime
ends or it is deallocated

• You don’t have to go hunting for all the places to put
object.clean_up()

601.220 Intermediate Programming Destructors

Quiz!

The destructor of an object is NOT necessarily called if . . .

A. an object’s lifetime is over

B. an object is deallocated

C. there are no references to an object

D. None of the above

601.220 Intermediate Programming Destructors

