
601.220 Intermediate Programming

Dynamic 2D arrays & const w/ pointers

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Outline

• Dynamic allocation of 2D arrays
• Pointer types & const

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Two dimensional arrays - static allocation review

• int a[5][3]; creates array with 5 rows, 3 columns each
• a[2][1] = 17; stores value in 3rd row, 2nd column
• array is stored sequentially in memory, in row order

• *(a + 10) is the same as a[3][1]

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Dynamically-allocated two dimensional arrays - use a 1D
array of items and “fake” two dimensions

• int *a = malloc(sizeof(int) * num_rows *
num_cols);

• Use a single array with one dimension
• Convert [row][col] indexing to [row * num_cols + col],

and back
• a[7] = 17;
// a[7] means a[2][1] for num_cols==3,
// since 7 == 2*3 + 1

• free(a);

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Dynamically-allocated two dimensional arrays - double (**)
memory allocation

• Use a 1D array of pointers to item arrays

int **a = malloc(sizeof(int*) * num_rows);

for (int i = 0; i < num_rows; i++) {
a[i] = malloc(sizeof(int) * num_cols);

}

a[2][1] = 17; // this works!

for (int i = 0; i < num_rows; i++) {
free(a[i]);

}
free(a); // note this one last free!

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

5 by 3 2D Array using 1D array of pointers

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Decomposing a dynamically-allocated 2D array

• given int **a has been fully allocated as in prior slides
• a[i] is of type int *, for valid values of i
• represents one row in the 2D array
• can be used in the same ways a 1D array variable can be used

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Rows of a 2D array as 1D arrays
// rowProcessing.c:
#include <stdio.h>

void printFloats(float fray[], int count) {
for (int i = 0; i < count; i++)

printf("%.1f ", fray[i]);
}

int main(void) {
float fra[5][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}};
for (int r = 0; r < 5; r++) {

printFloats(fra[r], 3);
printf("\n");

}
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic rowProcessing.c
$./a.out
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0
10.0 11.0 12.0
13.0 14.0 15.0

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Non-uniform (jagged) 2D arrays - how to

It is possible for rows in a dynamically allocated 2D array to be
different sizes

// create 10 pointers to rows
int **ra2d = malloc(sizeof(int*) * 10);

// create rows with sizes 1 to 10
for (int i = 0; i < 10; i++) {

ra2d[i] = malloc(sizeof(int) * (i + 1));
}

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Non-uniform (jagged) 2D arrays - pitfalls

• must remember to free the memory for each row, and then the
ra2d itself

• need to be careful when using since rows are different sizes!
• might want a parallel array to hold the length of each row

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Using const

• const means “constant” and prevents modification of the
element to which it is applied

• Recall: to make a variable non-modifiable: const int num

• if local variable, it must be initialized when declared
const int num = 10;

• if parameter variable, it cannot be changed within the function
• can pass a non-const variable to a const parameter (more

restrictive)
• cannot pass a const variable to a non-const parameter

• const can be used at different points in pointer type
declarations, each with different meanings

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Pointers, arrays and const - protect the data pointed to

• To make a (mutable) pointer to const (non-modifiable) data:
const int * iptr

• prevents changing contents of the pointed to memory
*iptr = 10; // not allowed
iptr = # // allowed for int variable num

• similar to const int iray[] as a function parameter
iray[0] = 10; // not allowed
iray = malloc(sizeof(int)); // allowed

• only copy of the calling variable is affected, not the original

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Pointers, arrays and const - protect the pointer

• To make a const (non-modifiable) pointer:
int * const iptr

• similar to int iray[10]; as a local variable
• if not a parameter, must set when declaring:

int * const iptr = #
• prevents assignments to change (the address stored in) iptr or

iray
iptr = &other; // not allowed
iray = b; // not allowed

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

Pointers, arrays and const - double const

• To make a const ptr to const data:
const int * const iptr

• doesn’t allow changes to pointer variable itself, or the memory
it points to
*iptr = 10; // not allowed
iptr = # // not allowed

• similar to const int iray[] = { 1, 2, 3 }; as local
variable
iray[0] = 10; // not allowed
iray = malloc(sizeof(int)); // not allowed

Read declarations from right to left to get them correct!

601.220 Intermediate Programming Dynamic 2D arrays & const w/ pointers

