
601.220 Intermediate Programming

Pointers

601.220 Intermediate Programming Pointers

Outline

• Motivation
• Pointer basics
• Pointers as function parameters
• Arrays and functions (parameters and returning)

601.220 Intermediate Programming Pointers

Writing a swap method in C

void swap(int x, int y) {
int temp;
temp = x;
x = y;
y = temp;

}

• Suppose the above function is called within main as
swap(a,b), where a and b are ints.

• What’s wrong here?

601.220 Intermediate Programming Pointers

Writing a swap method in C

void swap(int x, int y) {
int temp;
temp = x;
x = y;
y = temp;

}

• Suppose the above function is called as swap(a,b), where a
and b are ints.

• Pass-by-value semantics mean that changes made to x and y
within swap are never reflected in caller’s argument values!

• That is, a and b will remain unchanged in main

601.220 Intermediate Programming Pointers

Local variables

• Variables declared within a function get situated in memory
within a structure called the program execution stack or call
stack

• Each function call gets a new stack frame (activation record)
put on top of (“pushed onto”) the stack in mememory; each
frame has space for local variable values

• Space is allocated within the stack frame for parameters as well,
and values of arguments are copied into that frame

• Consider how recursive functions keep track of the argument
values for the current call. . .

601.220 Intermediate Programming Pointers

Local variables

• Once the current function call returns, the stack frame is
removed from (“popped off of”) the stack, and execution
returns to the calling function (whose frame happens to be the
topmost remaining one on the stack)

• This means that a function’s local variables don’t live beyond
that specific function’s call

601.220 Intermediate Programming Pointers

Program execution stack - example

int sq(int x) { return x * x; }
int sum_sq(int x, int y) { int sum = sq(x) + sq(y); return sum; }
int main() {

int a = 8, b = -4;
int c = sum_sq(a, b);
return 0;

}

601.220 Intermediate Programming Pointers

Writing a swap function in C

• In the swap function, adjusting values in swap function stack
frame didn’t make any impact in calling function’s stack frame

• What we really needed was access to caller’s stack frame
instead. . . this is a job for pointers!

601.220 Intermediate Programming Pointers

Pointers

• A pointer is a variable that contains the address of a variable.
• Every pointer points to a specific data type (except a pointer to

void, but more about that later)
• Declare a pointer using type of variable it will point to, and a *
• int *p; says p is the name of a variable that holds the address

of an int
• Operations related to pointers

• address-of operator &: returns address of whatever follows it
• dereferencing operator *: returns value being pointed to

601.220 Intermediate Programming Pointers

Examples using & and *

int x = 1;
int y = 2;

int *ip; /* declare ip, a pointer to int */

ip = &x; /* ip now "points to" x */

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

601.220 Intermediate Programming Pointers

Now, let’s return to writing a swap function

void swap(int x, int y) {
int temp;
temp = x;
x = y;
y = temp;

}

• Suppose the above function is called as swap(a,b), where a
and b are ints.

• Pass-by-value semantics mean that changes made to x and y
within swap are never reflected in caller’s argument values!

• That is, a and b will remain unchanged in main

601.220 Intermediate Programming Pointers

An improved swap function

void swap(int *px, int *py) {
int temp;
temp = *px;
*px = *py;
*py = temp;

}

• The call in main will now be swap(&a, &b), since we need to
send in the addresses of a and b

• Pointer arguments enable a function to access and modify
values in the calling function

601.220 Intermediate Programming Pointers

More examples using & and *

• Suppose ip points to integer x. Then *ip can be used
anywhere that x makes sense:

• *ip = *ip + 10

• Unary operators & and * bind more tightly than binary
arithmetic ops

• So, y = *ip + 1 means take whatever ip points to, add one
to it, then assign it to y

• And we can write: *ip += 1 or ++*ip to increment what ip
points to.

• But note that parentheses are needed for (*ip)++ since unary
operators associate from right to left.

601.220 Intermediate Programming Pointers

Arrays within a stack frame

• Recall that arrays, when passed to a function, aren’t copied
over as a single int variable would be

• Instead, the address of the array is copied over, as this is more
efficient

• But since calling function remains on stack while called function
is executing, the address is still valid, so called function can
access it

601.220 Intermediate Programming Pointers

Arrays as function arguments

// passArray.c:
#include <stdio.h>
void changeFirst(int a[]) {

a[0] = 99; //change first item in array
}
int main() {

int list[300];
for (int i = 0; i < 300; i++) {

list[i] = i;
}
changeFirst(list);
for (int i = 0; i < 3; i++) {

printf("%d ", list[i]); //output first 3
}

}

$ gcc -std=c99 -Wall -Wextra -pedantic passArray.c
$./a.out
99 1 2
$

601.220 Intermediate Programming Pointers

Returning an array from a function
// returnArray.c:
#include <stdio.h>
int * createArray(int size) {

int a[size]; //declare an int array of specified size
//...some initialization could happen here...
return a; //return the locally-allocated array

}
int main() {

int *list = createArray(10);
for (int i = 0; i < 10; i++) {

printf("%d ", list[i]);
}

}

$ gcc -std=c99 -Wall -Wextra -pedantic returnArray.c
returnArray.c: In function ‘createArray’:
returnArray.c:5:12: warning: function returns address of local variable [-Wreturn-local-addr]

5 | return a; //return the locally-allocated array
| ^

601.220 Intermediate Programming Pointers

Arrays and functions

• Arrays returned from functions are passed by address also; only
a copy of the address is sent back to caller

• But if the address is of an array that lives in the function’s stack
frame, the array won’t survive after the function returns (the
frame will be popped!)

• As a result, we can’t expect to create an array that lives in a
function’s stack frame and then return it to the calling function

• But we’ll soon see a way to send back a new array from a
function. . .

601.220 Intermediate Programming Pointers

Allocating a very large array

// largeArray.c:
#include <stdio.h>

int main() {
int list[10000000];
for (long i = 0; i < 10000000; i++) {

printf("%d ", list[i]);
}

}

$ gcc -std=c99 -Wall -Wextra -pedantic largeArray.c
$./a.out
Segmentation fault (core dumped)

601.220 Intermediate Programming Pointers

Allocating a very large array

• Stack frames have a limited size

• On the last slide, we attempted to allocate an array within a
function’s stack frame, but the array was too large for the
frame

• A segmentation fault resulted

601.220 Intermediate Programming Pointers

Limitations of arrays allocated within a stack frame

• We’ve just seen that arrays allocated within a stack frame
(“static allocation”) have several limitations

• Size of array is limited by size of stack frame
• Arrays created within a called functions stack frame can’t be

accessed by calling function (since lifetime of array ends when
called function returns)

• Prior to C99, another limitation existed:
• Needed to know size of array prior to run-time - couldn’t ask

for array of size n when n was a value input by user!
• To get around these limitations, we’ll soon learn about dynamic

allocation

601.220 Intermediate Programming Pointers

