
601.220 Intermediate Programming

Makefiles

601.220 Intermediate Programming Makefiles

Outline

• Make and makefiles

601.220 Intermediate Programming Makefiles

make and Makefiles

• make is a tool that helps you keep track of which files need to
be recompiled

• Save time by not re-compiling unnecessarily
• Avoid headaches from forgetting to recompile code that you

changed!
• Save yourself lots of typing

• in a configuration-type file called Makefile, carefully specify
which files depend on which other files, and which commands
should be used to create them

601.220 Intermediate Programming Makefiles

make and Makefiles

• Simplest to name the file Makefile or makefile, otherwise
need to run make command with extra flags

• There are very strict rules about structure of Makefile, so
easiest to follow a template and modify

• Beware: tabs and spaces are not equivalent in a Makefile!

601.220 Intermediate Programming Makefiles

make and Makefiles

• Lines in a makefile that begin with # are comments
• May define symbolic constants using $ operator,

e.g. CFLAGS=-std=c99 -pedantic -Wall -Wextra, then refer to
them in a command using $(constant-name), e.g. $(CFLAGS)

• Then list any number of rules. . .
• First (topmost) target listed is default target to run

• Format of a Makefile rule
• target_name: list of files on which target depends
• tab followed by command-line instruction to generate target

• Multiple targets can be triggered by making a single target
• If you make target main, then first any files on which main

depends will be re-made if not up-to-date

601.220 Intermediate Programming Makefiles

make and Makefiles
// Makefile:
CC=gcc
CFLAGS=-std=c99 -pedantic -Wall -Wextra

main: mainFile.o functions.o
$(CC) -o main mainFile.o functions.o

mainFile.o: mainFile.c functions.h
$(CC) $(CFLAGS) -c mainFile.c

functions.o: functions.c functions.h
$(CC) $(CFLAGS) -c functions.c

clean:
rm -f *.o main

$ make clean
rm -f *.o main
$ make
make: *** No rule to make target 'mainFile.c', needed by 'mainFile.o'. Stop.
$./main
/bin/sh: 1: ./main: not found

601.220 Intermediate Programming Makefiles

Using make: commands to type at command prompt

• make functions.o
• compiles (or re-compiles) functions.c if needed, to create

functions.o
• re-compiling is needed if either functions.c or functions.h

has changed, since the functions.o target lists both files in its
dependency list

• make mainFile.o
• compiles (or re-compiles, if needed) mainFile.c if needed, to

create mainFile.o
• re-compiling is needed if either mainFile.c or functions.h

has changed, since the functions.o target lists both files in its
dependency list

• The above commands are helpful, but aren’t usually what we
need. . .

601.220 Intermediate Programming Makefiles

Using make: commands to type at command prompt
• make main

• links (or re-links, if needed) mainFile.o and functions.o to
create an executable we decided to call main (see the -o flag?)

• first it checks that mainFile.o and functions.o are
up-to-date, based on the target rules specified for these (so
make can have a cascading effect through multiple rules)

• there’s nothing special about the name main as the target here;
we could’ve called this target bob if we’d wanted

• make
• has same effect as make main, since main was listed as first

target in Makefile
• this is what we’ll type most often; it’s the quickest way to get

the entire program built!
• make clean

• removes intermediate files and executable called main, so we
can start fresh

601.220 Intermediate Programming Makefiles

