
601.220 Intermediate Programming

Control flow

601.220 Intermediate Programming Control flow

Outline

• logical operators
• conditionals (if and switch)
• assignment and unary operators
• loops
• exercise 4

601.220 Intermediate Programming Control flow

Logical operators

https://www.tutorialspoint.com/cprogramming/c_operators.htm

601.220 Intermediate Programming Control flow

Logical operators example
// logical_op.c:
#include <stdio.h>
int main(void)
{

int a = 5, b = 5, c = 10, result = 0;
result = (a == b) && (c > b);
printf("(a == b) && (c > b) equals to %d \n", result);
result = (a == b) && (c < b);
printf("(a == b) && (c < b) equals to %d \n", result);
result = (a == b) || (c < b);
printf("(a == b) || (c < b) equals to %d \n", result);
result = (a != b) || (c < b);
printf("(a != b) || (c < b) equals to %d \n", result);
result = !(a != b);
printf("!(a != b) equals to %d \n", result);
result = !(a == b);
printf("!(a == b) equals to %d \n", result);

}

$ gcc logical_op.c -std=c99 -pedantic -Wall -Wextra
$./a.out
(a == b) && (c > b) equals to 1
(a == b) && (c < b) equals to 0
(a == b) || (c < b) equals to 1
(a != b) || (c < b) equals to 0
!(a != b) equals to 1
!(a == b) equals to 0

601.220 Intermediate Programming Control flow

Conditionals (if)
• Suppose a represents some boolean expression (that is, a can

be interpreted as having either value true or value false).

if (a) printf("a is true\n");
if (a) {

printf("a is true\n");
}

if (a) {
printf("a is true\n");

}
else {

printf("a is false\n");
}

a ? printf("a is true\n") : printf("a is false\n");
601.220 Intermediate Programming Control flow

Conditionals (switch)

switch (integer expr) {

case c1: stmt1; // execution starting point for c1
case c2: stmt2;

break; // exits switch block
case c3:
case c4: stmt3;

stmt4; // executes stmt3, stmt4 and
// stmtlast for matches of c3 or c4

default: stmtlast; // if no case matches

}

601.220 Intermediate Programming Control flow

Switch statement example
// switch_example.c:
#include <stdio.h>

int main () {
char grade = 'B';
switch(grade) {

case 'A' :
printf("Excellent!\n");
break;

case 'B' :
case 'C' :

printf("Well done\n");
break;

case 'D' :
printf("You passed\n");
break;

case 'F' :
printf("Better try again\n");
break;

default :
printf("Invalid grade\n");

}
printf("Your grade is %c\n", grade);

}

$ gcc switch_example.c -std=c99 -pedantic -Wall -Wextra
$./a.out
Well done
Your grade is B

601.220 Intermediate Programming Control flow

Checkpoint Question!
What output is printed by the following C program if the user enters the
input 42?

#include <stdio.h>
int main(void) {

int x;
printf("Enter an integer: ");
scanf("%d", &x);
switch (x) {

case 1: printf("Ok\n");
break;

case 17: printf("Not bad\n");
break;

case 42: printf("Great!\n");
default: printf("Huh?\n");

}
return 0;

}

A. Ok

B. Not bad

C. Great!

D. Great! followed by Huh?

E. Huh?

601.220 Intermediate Programming Control flow

Compound assignments

601.220 Intermediate Programming Control flow

Increment and decrement

601.220 Intermediate Programming Control flow

Loop summary

• while(boolean expression) { statements }
• Iterates ≥ 0 times, as long as expression is true

• do { statements } while(boolean expression);
• Iterates ≥ 1 times; always once, then more times as long as

expression is true
• for(initialize; boolean exp; update) { stmts }

• initialize happens first; usually declares & assigns “index
variable”

• Iterates ≥ 0 times, as long as boolean expression is true
• Right after stmts, update is run; often it increments the index

variable (i++)
• break immediately exits loop
• continue immediately proceeds to next iteration of loop

601.220 Intermediate Programming Control flow

An example for loop

// for_example.c:
#include <stdio.h>
int main(void) {

for(int i = 0; i < 10; i++) {
printf("%d ", i);

}
}

A question for you: why using i++ but not ++i? Which one is
preferred?

601.220 Intermediate Programming Control flow

Checkpoint Question!

What output is printed by the following C program?

#include <stdio.h>
int main(void) {

for (int i = 1; i <= 10; i + 2) {
printf("%d ", i);

}
return 0;

}

A. 2 4 6 8

B. 2 4 6 8 10

C. 1 3 5 7

D. 1 3 5 7 9

E. None of the above

601.220 Intermediate Programming Control flow

A loop that reads in values until no more are available
// sum.c:
#include <stdio.h>
int main(void) {

int sum = 0;
int addend; //addend's value is undefined to start
//read as many integers as we can
while (scanf("%d", &addend) == 1) {

//accumulate the sum of all numbers
sum += addend;

}
//output the sum
printf("%d\n", sum);
return 0;

}

This contnues to scan even when you press enter. To signal
end-of-input, press Ctrl-D (possibly twice).

601.220 Intermediate Programming Control flow

Less desirable loop to read in input
// sum_less_clean.c:
#include <stdio.h>
int main(void) {

int sum = 0;
while (1) {

int addend = 0;
if(scanf("%d", &addend) != 1) {

break; // immediately exit loop
}
sum += addend;

}
printf("%d\n", sum);
return 0;

}

The loop on the previous slide is preferred, since the loop body is
cleaner. The code is more easy to follow, and less prone to errors.

601.220 Intermediate Programming Control flow

Exercise 4

• Find link for Exercise 4 on the course website and follow
instructions there

• Read note about scanf and look up reference that’s linked
there!

• Ask for help . . .

601.220 Intermediate Programming Control flow

