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Outline

• logical operators
• conditionals (if and switch)
• assignment and unary operators
• loops
• exercise 4
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Logical operators

https://www.tutorialspoint.com/cprogramming/c_operators.htm
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Logical operators example
// logical_op.c:
#include <stdio.h>
int main(void)
{

int a = 5, b = 5, c = 10, result = 0;
result = (a == b) && (c > b);
printf("(a == b) && (c > b) equals to %d \n", result);
result = (a == b) && (c < b);
printf("(a == b) && (c < b) equals to %d \n", result);
result = (a == b) || (c < b);
printf("(a == b) || (c < b) equals to %d \n", result);
result = (a != b) || (c < b);
printf("(a != b) || (c < b) equals to %d \n", result);
result = !(a != b);
printf("!(a != b) equals to %d \n", result);
result = !(a == b);
printf("!(a == b) equals to %d \n", result);

}

$ gcc logical_op.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
(a == b) && (c > b) equals to 1
(a == b) && (c < b) equals to 0
(a == b) || (c < b) equals to 1
(a != b) || (c < b) equals to 0
!(a != b) equals to 1
!(a == b) equals to 0
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Conditionals (if)
• Suppose a represents some boolean expression (that is, a can

be interpreted as having either value true or value false).

if (a) printf("a is true\n");
if (a) {

printf("a is true\n");
}

if (a) {
printf("a is true\n");

}
else {

printf("a is false\n");
}

a ? printf("a is true\n") : printf("a is false\n");
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Conditionals (switch)

switch (integer expr) {

case c1: stmt1; // execution starting point for c1
case c2: stmt2;

break; // exits switch block
case c3:
case c4: stmt3;

stmt4; // executes stmt3, stmt4 and
// stmtlast for matches of c3 or c4

default: stmtlast; // if no case matches

}
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Switch statement example
// switch_example.c:
#include <stdio.h>

int main () {
char grade = 'B';
switch(grade) {

case 'A' :
printf("Excellent!\n");
break;

case 'B' :
case 'C' :

printf("Well done\n");
break;

case 'D' :
printf("You passed\n");
break;

case 'F' :
printf("Better try again\n");
break;

default :
printf("Invalid grade\n");

}
printf("Your grade is %c\n", grade);

}

$ gcc switch_example.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
Well done
Your grade is B
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Checkpoint Question!
What output is printed by the following C program if the user enters the
input 42?

#include <stdio.h>
int main(void) {

int x;
printf("Enter an integer: ");
scanf("%d", &x);
switch (x) {

case 1: printf("Ok\n");
break;

case 17: printf("Not bad\n");
break;

case 42: printf("Great!\n");
default: printf("Huh?\n");

}
return 0;

}

A. Ok

B. Not bad

C. Great!

D. Great! followed by Huh?

E. Huh?
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Compound assignments
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Increment and decrement
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Loop summary

• while(boolean expression) { statements }
• Iterates ≥ 0 times, as long as expression is true

• do { statements } while(boolean expression);
• Iterates ≥ 1 times; always once, then more times as long as

expression is true
• for(initialize; boolean exp; update) { stmts }

• initialize happens first; usually declares & assigns “index
variable”

• Iterates ≥ 0 times, as long as boolean expression is true
• Right after stmts, update is run; often it increments the index

variable (i++)
• break immediately exits loop
• continue immediately proceeds to next iteration of loop
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An example for loop

// for_example.c:
#include <stdio.h>
int main(void) {

for(int i = 0; i < 10; i++) {
printf("%d ", i);

}
}

A question for you: why using i++ but not ++i? Which one is
preferred?
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Checkpoint Question!

What output is printed by the following C program?

#include <stdio.h>
int main(void) {

for (int i = 1; i <= 10; i + 2) {
printf("%d ", i);

}
return 0;

}

A. 2 4 6 8

B. 2 4 6 8 10

C. 1 3 5 7

D. 1 3 5 7 9

E. None of the above
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A loop that reads in values until no more are available
// sum.c:
#include <stdio.h>
int main(void) {

int sum = 0;
int addend; //addend's value is undefined to start
//read as many integers as we can
while (scanf("%d", &addend) == 1) {

//accumulate the sum of all numbers
sum += addend;

}
//output the sum
printf("%d\n", sum);
return 0;

}

This contnues to scan even when you press enter. To signal
end-of-input, press Ctrl-D (possibly twice).
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Less desirable loop to read in input
// sum_less_clean.c:
#include <stdio.h>
int main(void) {

int sum = 0;
while (1) {

int addend = 0;
if(scanf("%d", &addend) != 1) {

break; // immediately exit loop
}
sum += addend;

}
printf("%d\n", sum);
return 0;

}

The loop on the previous slide is preferred, since the loop body is
cleaner. The code is more easy to follow, and less prone to errors.
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Exercise 4

• Find link for Exercise 4 on the course website and follow
instructions there

• Read note about scanf and look up reference that’s linked
there!

• Ask for help . . .
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