
601.220 Intermediate Programming

C basics

601.220 Intermediate Programming C basics



Outline

• A few C basics
• variables, assignment, data types
• collecting input
• arithmetic operators & precedence

• Exercise 2

601.220 Intermediate Programming C basics



Hello world

// hello_world.c:
#include <stdio.h>

// Print "Hello, world!" followed by newline and exit
int main(void) {

printf("Hello, world!\n");
return 0;

}
$ gcc hello_world.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
Hello, world!

We’ve seen printf to output a literal string, as in hello_world.c

601.220 Intermediate Programming C basics



Printing in C

• We’ve seen printf to output a literal string, as in hello_world.c
• printf allows for formatted printing of values, using placeholders
in the format string

• printf("There are %d students in class.", 36);
• placeholders begin with ‘%’ and then may contain additional

format information regarding field size and precision, and lastly
contains a character indicating the type of data to be inserted

• the actual values corresponding to place holders are listed after
the format string, 36 in this case

601.220 Intermediate Programming C basics



Printing in C

• some of the most common data type place holders:
• d - decimal (integer type, ld for long int)
• u - unsigned (integer type that disallows negatives, lu for long

unsigned)
• f - floating point (float, lf for double)
• c - character
• s - string (we’ll learn more about these next week)

601.220 Intermediate Programming C basics



Variables

• int num_students;
• When declared, a variable gets a type (int) and name
(num_students)

• A variable also has a value that may change throughout the
program’s lifetime

• To print out the value, we can use printf
• printf("There are %d students in class.",

num_students);

601.220 Intermediate Programming C basics



Types

• Integer types
• int: signed integer, usually stored in 32 bits
• unsigned: unsigned integer
• long: signed integer with significantly greater capacity than a

plain int
• Floating-point (decimal) types

• float: single-precision floating point number
• double: double-precision floating point number

• More details here:
https://en.wikipedia.org/wiki/C_data_types

601.220 Intermediate Programming C basics

https://en.wikipedia.org/wiki/C_data_types


Types

• Character type
• char: holds a 1-byte character, 'A', 'B', '$', . . .
• chars are basically integers, as we’ll see

• Boolean type
• #include <stdbool.h> to use this
• bool: value can be true or false
• Integer types can also function as bools, where 0 means false,

non-0 means true
• This is quite common, since bool was only introduced in C99
• Generally, C mindset is “Booleans are just integers”

601.220 Intermediate Programming C basics



Assignment

• num_students = 32;
• = is the assignment operator, which modifies a variable’s value

601.220 Intermediate Programming C basics



Assignment

• It is very good practice to declare and assign at the same time:
• int num_students = 32;

• Generally, a variable that has been declared but not yet
assigned has an “undefined” value

601.220 Intermediate Programming C basics



Aside

• "Undefined" should strike fear into your heart
• Programs with undefined behavior or data can (and often do)
fail in mysterious ways

• Manner in which they fail might change from run to run
• We will always learn practices that avoid “undefined”

601.220 Intermediate Programming C basics



Operators

• 3 + 4
• 3 and 4 are operands, + is operator
• 3 and 4 are constants (not variables)

• num_students + 4
• num_students and 4 are operands, + is operator
• num_students is a variable
• A two-word variable in C such as num_students is often

written using underscores rather than in camel case:
numStudents

601.220 Intermediate Programming C basics



Arithmetic operators

• Beware of integer division!
• 7 / 2 yields 3, not 3.5

601.220 Intermediate Programming C basics



Next few examples

• Reinforce what we learned about types & operators
• Demonstrate good variable naming, operator precedence,

const

601.220 Intermediate Programming C basics



Mysterious program

// mysterious.c:
#include <stdio.h>

int main(void) {
int x = 75;
float y = 5.0 / 9.0 * (x - 32);
printf("%0.2f", y); // print up to 2 decimal places
return 0;

}

$ gcc mysterious.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
23.89

601.220 Intermediate Programming C basics



Less mysterious program
// convert_fc.c:
#include <stdio.h>

// Convert 75 degrees fahrenheit to celsius, print result
int main(void) {

int fahrenheit = 75;
float celsius = 5.0 / 9.0 * (fahrenheit - 32);
printf("%0.2f", celsius); // print up to 2 decimal places
return 0;

}

• Output is correct, meaningful variable names improve
readability

$ gcc convert_fc.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
23.89

601.220 Intermediate Programming C basics



Mistake?

// convert_fc_badprec.c:
#include <stdio.h>

// Convert 75 degrees fahrenheit to celsius, print result
int main(void) {

int fahrenheit = 75;
float celsius = 5.0 / 9.0 * fahrenheit - 32;
printf("%0.2f", celsius); // print up to 2 decimal places
return 0;

}

601.220 Intermediate Programming C basics



Mistake?

// convert_fc_badprec.c:
#include <stdio.h>

// Convert 75 degrees fahrenheit to celsius, print result
int main(void) {

int fahrenheit = 75;
float celsius = 5.0 / 9.0 * fahrenheit - 32; // removed parentheses
printf("%0.2f", celsius); // print up to 2 decimal places
return 0;

}

$ gcc convert_fc_badprec.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
9.67

• Mistake because multiplication & division have higher precedence than
subtraction

601.220 Intermediate Programming C basics



Operator precedence

601.220 Intermediate Programming C basics



Operator precedence

• More here:
en.cppreference.com/w/c/language/operator_precedence

• Know where to look up the rules; use parentheses when in
doubt

601.220 Intermediate Programming C basics

http://en.cppreference.com/w/c/language/operator_precedence


Checkpoint Question
What output is printed by the following C program? (Note that
mathematically, 9/5 = 1.8 and 9/6 = 1.5.)

#include <stdio.h>
int main(void) {

float x = 9 / 5 + 1.0;
printf("x = %.1f\n", x);
return 0;

}

A. x = 1.5

B. x = 1.8

C. x = 2.0

D. x = 2.5

E. x = 2.8

601.220 Intermediate Programming C basics



Using const
• Put const before the type to say a variable cannot be modified

• const int base = 32;
• Compiler will catch accidental modifications

// convert_fc_var2.c:
#include <stdio.h>

// Convert 75 degrees fahrenheit to celsius, print result
int main(void) {

int fahrenheit = 75;
const int base = 32; // can't be modified
const float factor = 5.0 / 9.0; // can't be modified
float celsius = factor * (fahrenheit - base);
printf("%0.2f", celsius); // print up to 2 decimal places
return 0;

}

601.220 Intermediate Programming C basics



Formatted input with scanf

• The scanf function works similarly to the printf output
function for reading formatted input: use a format string
followed by the memory location(s) we are reading into

// scanf_d.c:
int i;
printf("Please enter an integer: ");
scanf("%d", &i);
printf("The value you entered is %d", i);

601.220 Intermediate Programming C basics



Common scanf format options (we’ll see more soon)

• Use whichever code matches the type of value you want to
collect

• integer: %d
• char: %c
• float (real number type): %f

• The memory location you indicate you want to fill should be
able to accommodate this type

601.220 Intermediate Programming C basics



Function scanf returns a value

• The number returned is the number of input items assigned
• Zero typically indicates that even though input was available,

the input was invalid for the specified type
• A return value of EOF (which is -1) indicates that no input at

all was available (i.e. “end of file” was reached)
• Checking the return value can help you determine success of the

scan

601.220 Intermediate Programming C basics



Live coding

• write a C program that reads two integer numbers as input and
prints the sum of them

601.220 Intermediate Programming C basics



Exercise

• On the course website in “Course Materials”: find link for
Exercise 2 and follow it

• Follow the instructions; raise your hand if you get stuck

601.220 Intermediate Programming C basics


