
Intermediate Programming
Day 35



Outline

• Enumerated types

• Exceptions

• Review questions

2



Enumerated types

• Consider writing a card game…
• Could use ints for representing the rank and the suit

✓Makes sense for 2-10

✓Sort of makes sense that ace=1, jack=11, queen=12, king=13

 Doesn't make sense why hearts=1, clubs=2, spades=3, diamonds=4

 Have to remember when calling the constructor that the first argument is the rank and 
the second is the suit

char.h
class Card
{
public:
 int rank , suit;
 Card( int r , int s ) : rank(r) , suit(s) {}
};

3



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators
• By default:

• The first value is 0

• The next is the previous plus one

main.cpp
#include <iostream>
enum
{

Off ,
On

};
void Print( int state )
{
 std::cout << state << std::endl;
}
int main( void )
{
 Print( Off );
 Print( On );
 return 0;
}

>> ./a.out
0
1
>>

4



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators
• By default:

• The first value is 0

• The next is the previous plus one

• We can force prescribed values if we like

main.cpp
#include <iostream>
enum
{
 Off=5 ,
 On
};
void Print( int state )
{
 std::cout << state << std::endl;
}
int main( void )
{
 Print( Off );
 Print( On );
 return 0;
}

>> ./a.out
5
6
>>

5



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• enums can be named

main.cpp
#include <iostream>
enum State { Off , On };

void Print ( State s )
{
 if( s==On ) std::cout << "on" << std:: endl;
 if( s==Off ) std:: cout << "off" << std:: endl;
}
void Print( int s )
{
 std::cout << s << std::endl;
}

int main( void )
{
 Print( On );
 int on = On;
 Print( on );
 Print( (int)On );
 return 0;
}

>> ./a.out
on
1
1
>>

6



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• enums can be named
• The name of the enum is the type of the

enumerator

main.cpp
#include <iostream>
enum State { Off , On };

void Print ( State s )
{
 if( s==On ) std::cout << "on" << std:: endl;
 if( s==Off ) std:: cout << "off" << std:: endl;
}
void Print( int s )
{
 std::cout << s << std::endl;
}

int main( void )
{
 Print( On );
 int on = On;
 Print( on );
 Print( (int)On );
 return 0;
}

>> ./a.out
on
1
1
>>

7



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• enums can be named
• The name of the enum is the type of the

enumerator

• The enumerator can be cast to an int

main.cpp
#include <iostream>
enum State { Off , On };

void Print ( State s )
{
 if( s==On ) std::cout << "on" << std:: endl;
 if( s==Off ) std:: cout << "off" << std:: endl;
}
void Print( int s )
{
 std::cout << s << std::endl;
}

int main( void )
{
 Print( On );

int on = On;
 Print( on );
 Print( (int)On );
 return 0;
}

>> ./a.out
on
1
1
>>

8



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• enums can be named
• The name of the enum is the type of the

enumerator

• The enumerator can be cast to an int
• The names can be used for overloading

main.cpp
#include <iostream>

enum State1 { Off , On };
enum State2 { Left , Right };

void Print( State1 s )
{
 if( s==On ) std::cout << "on" << std::endl;
 if( s==Off ) std::cout << "off" << std::endl;
}
void Print( State2 s )
{
 if( s==Left ) std::cout << "left" << std::endl;
 if( s==Right ) std::cout << "right" << std::endl;
}

int main( void )
{
 Print( On );
 Print( Right );
 return 0;
}

>> ./a.out
on
right
>>

9



Enumerated types (unscoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

>> g++ -std=c++11 -Wall -Wextra main.cpp
main.cpp:3:15: error: ‘On’ conflicts with a previous declaration
    3 | enum State2 { On , Below , In };
      |               ^~
main.cpp:2:15: note: previous declaration ‘State1 On’
    2 | enum State1 { On , Off };
      |               ^~
>>

main.cpp
#include <iostream>
enum State1 { On , Off };
enum State2 { On , Below , In };
int main( void )
{
 std::cout << (int)On << std::endl;
 std::cout << (int)Off << std:: endl;
 return 0;
}

10



Enumerated types (scoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass conflicts by encapsulating
each enum within its own struct, class,
or namespace

main.cpp
#include <iostream>

struct State1 { enum State { On , Off }; };
struct State2 { enum State { On , Below , In }; };

void Print( State1::State s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> ./a.out
Off
1
>>

11



Enumerated types (scoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass conflicts by encapsulating
each enum within its own struct, class,
or namespace
 Requires extra indirection

12

main.cpp
#include <iostream>

struct State1 { enum State { On , Off }; };
struct State2 { enum State { On , Below , In }; };

void Print( State1::State s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> ./a.out
Off
1
>>



Enumerated types (scoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass conflicts by encapsulating
each enum within its own struct, class,
or namespace
• C++ lets you do this directly by using

 enum class <name> { … };

main.cpp
#include <iostream>

enum class State1 { On , Off };
enum class State2 { On , Below , In };

void Print( State1 s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> ./a.out
Off
1
>>

13



Enumerated types (scoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass conflicts by encapsulating
each enum within its own struct, class,
or namespace
• C++ lets you do this directly by using

 enum class <name> { … }
• Need to specify which class the name belongs to

14

main.cpp
#include <iostream>

enum class State1 { On , Off };
enum class State2 { On , Below , In };

void Print( State1 s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> ./a.out
Off
1
>>



Enumerated types (scoped)

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass this by encapsulating each
enum within its own struct, class, or
namespace
• C++ lets you do this directly by using

 enum class <name> { … }
• Need to specify which class the enum belongs to

• Still can cast to an int

15

main.cpp
#include <iostream>

enum class State1 { On , Off };
enum class State2 { On , Below , In };

void Print( State1 s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> ./a.out
Off
1
>>



Enumerated types

• An enumeration is a type consisting of a
fixed set of integer-like enumerators

• We can define multiple enums
• But we need to beware of naming conflicts

• We can bypass this by encapsulating each
enum within its own struct, class, or
namespace
• C++ lets you do this directly by using

 enum class <name> { … }
• Need to specify which class the enum belongs to

• Still can cast to an int, but now it has to be an
explicit cast

16

main.cpp
#include <iostream>

enum class State1 { On , Off };
enum class State2 { On , Below , In };

void Print( State1 s )
{
 if( s==State1::On ) std::cout << "On" << std::endl;
 else                        std::cout << "Off" << std::endl;
}

int main( void )
{
 Print( State1::Off );

int off = State1::Off;
 std::cout << (int)State1::Off << std::endl;
 return 0;
}

>> g++ -std=c++11 -Wall -Wextra main.cpp 
main.cpp:15:27: error: cannot convert ‘State1’ to ‘int’ in initialization
   15 |  int off = State1::Off
      |            ~~~~~~~~^~~
      |                    |
      |                    State1
...
>>



Enumerated types (scoped)

• Consider writing a card game…
• Could create a scoped enum for the rank and

a scoped enum for the suit

char.h
enum class Rank
{
 ACE=1, TWO, THREE, FOUR, FIVE, SIX,
 SEVEN, EIGHT, NINE, TEN, JACK,
 QUEEN, KING
};

enum class Suit
{
 HEARTS, DIAMONDS, CLUBS, SPADES
};

class Card
{
public:
 Rank rank;
 Suit suit;
 Card( Rank r , Suit s ) : rank(r) , suit(s) {}
 Card( Suit s , Rank r ) : rank(r) , suit(s) {}
};

17



Enumerated types (scoped)

• Consider writing a card game…
• Could create a scoped enum for the rank and

a scoped enum for the suit
• Need to initialize aces to be "1", but everything

else follows

char.h
enum class Rank
{
 ACE=1, TWO, THREE, FOUR, FIVE, SIX,
 SEVEN, EIGHT, NINE, TEN, JACK,
 QUEEN, KING
};

enum class Suit
{
 HEARTS, DIAMONDS, CLUBS, SPADES
};

class Card
{
public:
 Rank rank;
 Suit suit;
 Card( Rank r , Suit s ) : rank(r) , suit(s) {}
 Card( Suit s , Rank r ) : rank(r) , suit(s) {}
};

18



Enumerated types (scoped)

• Consider writing a card game…
• Could create a scoped enum for the rank and

a scoped enum for the suit
• Need to initialize aces to be "1", but everything

else follows

• Can define two different constructors
supporting either order of rank/suit

char.h
enum class Rank
{
 ACE=1, TWO, THREE, FOUR, FIVE, SIX,
 SEVEN, EIGHT, NINE, TEN, JACK,
 QUEEN, KING
};

enum class Suit
{
 HEARTS, DIAMONDS, CLUBS, SPADES
};

class Card
{
public:
 Rank rank;
 Suit suit;

Card( Rank r , Suit s ) : rank(r) , suit(s) {}
Card( Suit s , Rank r ) : rank(r) , suit(s) {}

};

19



Outline

• Enumerated types

• Exceptions

• Review questions

20



Exceptions

• Things can go wrong at run-time:
• Invalid data, file I/O problems, arithmetic operation problems, ...

• How should we deal with run-time error conditions?
• Have a function return an error code

• Display error messages (often using cerr)

• Bail out using exit( int ) - need cstdlib
• "clean exit": destructors get called, files get closed, etc.

• Bail out using abort( void )
• "hard exit": nothings gets called or cleaned up 

We may not know the right 
response without a larger 
context. And propagating 
to a more global context is 
annoying.

No recovery mechanism

21



Exceptions

• Exceptions are objects that help us manage run-time error situations
• The class std::exception is a type in the standard library

• But we can define our own exception classes too

• We may employ throw statements when we identify an error 
situation that we don't want to handle immediately (or at all)...

throw std::exception();

•  ... and try / catch blocks to indicate situations we'd like to handle, 
and how to handle them (whether we threw the associated 
exceptions ourselves or not) 22



Exceptions

• Exceptions are objects that help us manage run-time error situations
• The class std::exception is a type in standard library, with many subclasses

• But we can define our own exception classes too

• We may employ throw statements when we identify an error 
situation that we don't want to handle immediately (or at all)...

throw std::exception();

•  ... and try / catch blocks to indicate situations we'd like to handle, 
and how to handle them (whether we threw the associated 
exceptions ourselves or not)

main.cpp
#include <iostream>
#include <exception>

void foo( void ){ throw std::exception(); }

int main( void )
{

try
{ 
 foo();
}
catch( std::exception & )
{
 std::cerr << “something bad happened << std::endl;
}
return 0;

}
>> ./a.out 
something bad happened
>>

23



Exceptions

• The std::exception class has a virtual method that returns a C string 
describing the exception (and will not throw an exception):

virtual const char *what( void ) const noexcept;

• We can define our own exception class that we can throw / catch
• Although we don't have to, we should make it derive from std::exception
• We can over-ride the exception::what method

For this to work correctly, we may be depending on slicing.
⇓

catch by reference, not by value!

24



For this to work correctly, we may be depending on slicing.
⇓

catch by reference, not by value.

Exceptions

• The std::exception class has a virtual method that returns a C string 
describing the exception (and will not throw an exception):

virtual const char *what( void ) const noexcept;

• We can define our own exception class that we can throw / catch
• Although we don't have to, we should make it derive from std::exception
• We can over-ride the exception::what method

main.cpp
#include <iostream>
#include <exception>

int main( void )
{

try{ throw std::exception(); }
catch( std::exception &ex ){ std::cerr << "Exception: " << ex.what() << std::endl; }
return 0;

} >> ./a.out 
Exception:  std::exception
>>

25



For this to work correctly, we may be depending on slicing.
⇓

catch by reference, not by value.

Exceptions

• The std::exception class has a virtual method that returns a string 
describing the exception (and will not to throw an exception):

virtual const char *what( void ) const noexcept;

• We can define our own exception class that we can throw / catch
• Although we don't have to, we should make it derive from std::exception
• We can over-ride the exception::what method

main.cpp
#include <iostream>
#include <exception>

class MyException : public std::exception
{
public:
 const char *what( void ) const noexcept override { return "my exception"; }
};
int main( void )
{

try{ throw MyException(); }
catch( std::exception &ex ){ std::cerr << "Exception: " << ex.what() << std::endl; }
return 0;

} >> ./a.out 
Exception:  my exception
>>

26



For this to work correctly, we may be depending on slicing.
⇓

catch by reference, not by value.

Exceptions

• The std::exception class has a virtual method that returns a string 
describing the exception (and will not to throw an exception):

virtual const char *what( void ) const noexcept;

• We can define our own exception class that we can throw / catch
• Although we don't have to, we should make it derive from std::exception
• We can over-ride the exception::what method

main.cpp
#include <iostream>
#include <exception>

class MyException : public std::exception
{
public:
 const char *what( void ) const noexcept override { return "my exception"; }
};
int main( void )
{

try{ throw MyException(); }
catch( std::exception   ex ){ std::cerr << "Exception: " << ex.what() << std::endl; }
return 0;

} >> ./a.out 
Exception:  std::exception
>>

27



try/catch blocks

If no exception is thrown by code in
a try block, then catch block(s) are
all skipped, and execution continues
normally.

main.cpp
#include <iostream>
#include <exception>

int main( void )
{

try{ std::cout << "trying" << std::endl; }
catch( std::exception & )

 {
  std::cerr << "catching" << std::endl;
 }
 std::cout << "done" << std::endl;

return 0;
}

>> ./a.out 
trying
done
>>

28



try/catch blocks

If an exception is thrown by code in
a try block:

• Execution immediately jumps to the
first matching catch block (if one exists)

• Code in that catch block is executed

• Then execution continues normally
after the catch block(s)

A catch block "matches" if the type
of the exception is derived from the
parameter type

main.cpp
#include <iostream>
#include <exception>
class MyException : public std::exception
{
};

int main( void )
{

try{ throw MyException(); }
catch( MyException & )

 {
  std::cerr << "caught mine" << std::endl;
 }
 catch( std::exception & )
 {
  std::cerr << "caught generic" << std::endl;
 }
 std::cout << "done" << std::endl

return 0;
}

>> ./a.out 
caught mine
done
>>

29



try/catch blocks

If an exception is thrown by code in
a try block:

• Execution immediately jumps to the
first matching catch block (if one exists)

• Code in that catch block is executed

• Then execution continues normally
after the catch block(s)

A catch block "matches" if the type
of the exception is derived from the
parameter type

⇒ List the catch blocks in order from
most derived to least!

main.cpp
#include <iostream>
#include <exception>
class MyException : public std::exception
{
};

int main( void )
{

try{ throw MyException(); }
 catch( std::exception & )
 {
  std::cerr << "caught generic" << std::endl;
 }

catch( MyException & )
 {
  std::cerr << "caught mine" << std::endl;
 }

std::cout << "done" << std::endl
return 0;

}

30

>> ./a.out 
caught generic
done
>>



try/catch blocks

If an exception is thrown by code in
try block, but no suitable catch
block exists, the exception is
passed up the call stack

main.cpp
#include <iostream>
#include <exception>

void foo( void ){ throw std::exception(); }

int main( void )
{

try{ foo(); }
 catch( std::exception& )
 {
  std::cerr << "caught generic" << std::endl;
 }

return 0;
} >> ./a.out 

caught generic
>>

Note:
In particular, this means that the exception can be 
handled “up the chain” where the wider context may 
give a better sense of how to handle the exception.

31



try/catch blocks

If an exception is thrown by code in
try block, but no suitable catch
block exists, the exception is
passed up the call stack

• If the exception isn't caught in main,
the code terminates

main.cpp
#include <iostream>
#include <exception>

void foo( void ){ throw std::exception(); }

int main( void )
{
 std:: cout << "pre foo" << std:: endl;
 foo();
 std::cout << "post foo" << std::endl;

return 0;
}

>> ./a.out 
pre foo
terminate called after throwing an instance of 'std::exception'
  what():  std::exception
Abort (core dumped)
>>

32



try/catch blocks

• Code after the throwing of an exception is not executed

main.cpp
#include <iostream>
#include <exception>

int main( void )
{
 try
 {
  std::cout << "a" << std::endl;
  throw std::exception();
  std::cout << "b" << std::endl;
 }
 catch( std::exception & ){ std::cout << "caught exception!" << std::endl; }
 return 0;
} >> ./a.out 

a
caught exception
>> 33



try/catch blocks

• stdexcept defines many useful (derived) exception classes.
• Most have a constructor that takes a (descriptive) string as an argument

main.cpp
#include <iostream>
#include <exception>
#include <stdexcept> 

int main( void )
{
 try{ throw std::overflow_error( "ran out of space!" ); }
 catch( std::invalid_argument &e ){ std::cout << "got invalid argument: e.what() = "     << e.what() << std::endl; }
 catch( std::overflow_error   &e ){ std::cout << "got overflow exception: e.what() = " << e.what() << std::endl; }
 catch( std::exception            &e ){ std::cout << "got base exception: e.what() = "       << e.what() << std::endl; }
 return 0;
} >> ./a.out 

got overflow exception: e.what()=ran out of space!
>> 34



try/catch blocks

• stdexcept defines many useful (derived) exception classes.
• Most have a constructor that takes a (descriptive) string as an argument

main.cpp
#include <iostream>
#include <exception>
#include <stdexcept> 

int main( void )
{
 try
 {
  int *array = new int[100000000000];
  array[0] = 10;
 }
 catch( std::bad_alloc &bae ){ std::cout << "error while allocating: " << bae.what() << std::endl; }
 return 0;
}

>> ./a.out 
error while allocating: std::bad_alloc
>>

Note: We are trying to allocate 4 terabytes of data. That's likely to exceed RAM. 35



try/catch blocks

• stdexcept defines many useful (derived) exception classes.
• Most have a constructor that takes a (descriptive) string as an argument

Note: The vector::at method tests if the index is in bounds and throws an exception if it's not 

main.cpp
#include <iostream>
#include <exception>
#include <stdexcept> 
#include <vector>
int main( void )
{

try
{
 std::vector<double> v(10);
 v.at(10) = 21;
}
catch( std::out_of_range &ex ){ std::cout << "error with vector: " << ex.what() << std::endl; }

 return 0;
}

>> ./a.out 
error with vector: vector::_M_range_check: __n (which is 10) >= this->size() (which is 10)
>>

36



try/catch blocks

• While not standard, you can throw/catch anything you want

main.cpp
#include <iostream>
#include <exception>

int main( void )
{
 try{ throw 7; }
 catch( int &i ){ std::cout << "caught: " << i << std::endl; }
 return 0;
}

>> ./a.out 
caught 7
>>

37



try/catch blocks

• If you want to catch all exceptions, use ellipsis

main.cpp
#include <iostream>
#include <exception>

int main( void )
{
 try{ throw 7; }
 catch( … ){ std::cout << “something bad happened: " << std::endl; }
 return 0;
}

>> ./a.out 
Something bad happened
>>

38



Outline

• Enumerated types

• Exceptions

• Review questions

39



Review questions

1. What is the difference between an unscoped and a scoped enum?

Two scoped enums can have enumerators with the same names.
But there are no implicit conversions from the values of a scoped enum 
to an int.

40



Review questions

2. Why do we use exceptions?

To indicate an error has occurred where there is no reasonable way to 
continue from the point of the error (but there might be a way to 
continue from somewhere else)

41



Review questions

3. What keyword is used to generate an exception?
What keyword indicates that the block of code may generate an 
exception?
What keyword indicates what should be done in the case of an 
exception?

throw, try, catch

42



Review questions

4. In the case of multiple matching catch blocks, which one catches 
the exception?

The first one whose type equals to, or is a base of, the class of the 
thrown exception

43



Review questions

5. How do you get the message associated with an exception?

Call the exception's what member function

44



Exercise 35

• Website -> Course Materials -> Exercise 35

45


	Slide 1: Intermediate Programming Day 35
	Slide 2: Outline
	Slide 3: Enumerated types
	Slide 4: Enumerated types (unscoped)
	Slide 5: Enumerated types (unscoped)
	Slide 6: Enumerated types (unscoped)
	Slide 7: Enumerated types (unscoped)
	Slide 8: Enumerated types (unscoped)
	Slide 9: Enumerated types (unscoped)
	Slide 10: Enumerated types (unscoped)
	Slide 11: Enumerated types (scoped)
	Slide 12: Enumerated types (scoped)
	Slide 13: Enumerated types (scoped)
	Slide 14: Enumerated types (scoped)
	Slide 15: Enumerated types (scoped)
	Slide 16: Enumerated types
	Slide 17: Enumerated types (scoped)
	Slide 18: Enumerated types (scoped)
	Slide 19: Enumerated types (scoped)
	Slide 20: Outline
	Slide 21: Exceptions
	Slide 22: Exceptions
	Slide 23: Exceptions
	Slide 24: Exceptions
	Slide 25: Exceptions
	Slide 26: Exceptions
	Slide 27: Exceptions
	Slide 28: try/catch blocks
	Slide 29: try/catch blocks
	Slide 30: try/catch blocks
	Slide 31: try/catch blocks
	Slide 32: try/catch blocks
	Slide 33: try/catch blocks
	Slide 34: try/catch blocks
	Slide 35: try/catch blocks
	Slide 36: try/catch blocks
	Slide 37: try/catch blocks
	Slide 38: try/catch blocks
	Slide 39: Outline
	Slide 40: Review questions
	Slide 41: Review questions
	Slide 42: Review questions
	Slide 43: Review questions
	Slide 44: Review questions
	Slide 45: Exercise 35

