
Intermediate Programming
Day 34

Outline

• Exercise 33

• Object oriented design and Unified Modeling Language

• Review questions

• Final project

2

Exercise 33

Add a virtual toString
function to Aclass.h

Aclass.h
...
class A
{
private:
 int a;
protected:
 double d;
 ...
 virtual std::string toString(void) const
 {
 std::stringstream sstream;
 sstream << "[Aclass: a = " << a << ", d = " << d;
 sstream << ", size = " << sizeof(A) << "]";
 return sstream.str();
 }
 ...
};
...

3

Exercise 33

Override toString in
Bclass.h

Bclass.h
...
class B : public A
{
private:
 int b;
public:
 ...
 std::string toString(void) const override
 {
 std::stringstream sstream;
 sstream << "[Bclass: a = " << geta() << ", b = " << b << ", d = " << d;
 sstream << ", size = " << sizeof(B) << "]";
 return sstream.str();
 }
};
... Aclass.h
...
class A
{
private:
 int a;
protected:
 int geta(void) const { return a; }
 ...
};
... 4

Exercise 33

Add a pure virtual
function fun to class A
and implement it for
class B

Aclass.h
...
class A
{
 ...
protected:
 ...
 virtual int fun(void) const = 0;
 ...
};
...

Bclass.h
...
class B
{

...
protected:
 ...
 int fun(void) const override { return geta() * b * d; }
 ...
};
...

5

Exercise 33

Create a class C

Cclass.h
...
class C : public A
{
private:
 int e;
public:
 C(int val=0) : e(val) {}
 void sete(int val) { e = val; }
 int fun(void) const override { return e * geta() * d; }
 std::string toString(void) const override
 {
 std::stringstream sstream;
 sstream << "[Cclass: a = " << ", d = " << d << ", e = " << e;
 sstream << ", size = " << sizeof(C) << "]";
 return sstream.str();
 }
};
...

6

Outline

• Exercise 33

• Object oriented design and Unified Modeling Language

• Review questions

• Final project

7

OO Design & UML

In our code, different classes can interact with each other:
• Inheritance

A derived class can inherit from a base class

• Aggregation
A class can contain a pointer/reference to another class as one of its members

• Composition
A class can contain an object of another class as one of its members

A UML diagram can help us track the classes and the relationships
between them.*

*In this lecture we will only be talking about a small subset of UML diagrams. 8

OO Design & UML

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

9

OO Design & UML

Classes:

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

Visualization:
• Class: named rectangle

10

OO Design & UML

Inheritance:
• Represents an “is a” relationship

• A Circle is a Shape
• A Square is a Shape
• A ShapeList is a Shape

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base

11

OO Design & UML

Aggregation:
• Represents a “has a” relationship

• A ShapeList has a Shape(s)

• Aggregated data can exist without the
containing class

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{

std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer

12

OO Design & UML

Composition:
• Represents a “has a” relationship

• A Circle has a Point2D
• A Square has a Point2D

• Compositional data cannot exist without the
containing class

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{

Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{

Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer
• Composition: (solid) diamond arrow to class containing object 13

OO Design & UML

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

SquarePoint2D

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer
• Composition: (solid) diamond arrow to class containing object

ShapeList

Circle

Shape

14

OO Design & UML

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

SquarePoint2D

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer
• Composition: (solid) diamond arrow to class containing object

ShapeList

Circle

Shape

15

OO Design & UML

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{
 Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{
 Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{

std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

SquarePoint2D

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer
• Composition: (solid) diamond arrow to class containing object

ShapeList

Circle

Shape

16

OO Design & UML

class Point2D
{
public:
 double x , y;
};
class Shape
{
public:
 virtual double getArea(void) const = 0;
 virtual void draw(void) const = 0;
};
class Circle : public Shape
{

Point2D p ; double r;
public:
 double getArea(void) const { ... }
 void draw(void) const { ... }
};
class Square : public Shape
{

Point2D bottomLeft , topRight;
public:
 double getArea(void) const { ... }
 void draw(void) const { … }
};
class ShapeList : public Shape
{
 std::vector< Shape * > shapes;
public:
 void getArea(void) const { ... }
 void draw(void) const { ... }
};

SquarePoint2D

Visualization:
• Class: named rectangle
• Inheritance: (hollow) arrow from derived to base
• Aggregation: (hollow) diamond arrow to class with reference/pointer
• Composition: (solid) diamond arrow to class containing object

ShapeList

Circle

Shape

17

Outline

• Exercise 33

• Object oriented design and Unified Modeling Language

• Review questions

• Final project

18

Review questions

1. What is UML?

Unified Modeling Language - way to visually represent class diagrams
and other software engineering components

19

Review questions

2. What type of class relationship is likely to exist between a class that
represents Bathroom objects and one that represents Apartment
objects?

An Apartment “has a” Bathroom

20

Review questions

3. What type of class relationship is likely to exist between a class that
represents Apartment objects and one that represents Housing
objects?

An Apartment “is a” Housing

21

Review questions

4. Which of Bathroom, Apartment, Housing would likely be an
abstract class?

Housing since it is not object specific but represents a general type
instead

22

Outline

• Exercise 12-1

• Object oriented design and Unified Modeling Language

• Review questions

• Final project

23

Final project

Chess:
• Two players

• 8x8 tiled board

• Each player starts with 16 pieces
• 2 rooks

• 2 knights

• 2 bishops,

• 1 King

• 1 Queen

• 8 pawns

24

Final project

Turn:
• Players alternate turns

• The player whose turn it is moves one of their pieces:
• Move:

The piece goes from the tile it’s on to an empty tile

• Capture:
The piece goes from the tile it’s on to a tile with an opponent’s piece,
and the opponent’s piece is removed from the game

• Valid moves vary from piece (type) to piece

• For most pieces valid move and capture shapes are the same

25

Final project

Turn:
• Players alternate turns

• The player whose turn it is moves one of their pieces:
• Move:

The piece goes from the tile it’s on to an empty tile

• Capture:
The piece goes from the tile it’s on to a tile with an opponent’s piece,
and the opponent’s piece is removed from the game

• Valid moves vary from piece (type) to piece

• For most pieces valid move and capture shapes are the same

Piece.h
...
namespace Chess
{
 class Piece
 {
 public:
 ...
 bool is_white() const { ... }
 virtual bool legal_move_shape(...) const = 0;
 virtual bool legal_capture_shape(...) const
 { return legal_move_shape(...); }
 virtual char to_ascii() const = 0;
 ...
 };
}

Note:
1. Piece is an abstract class because legal_move_shape is pure virtual.
2. By default legal_capture_shape just checks if the move shape is legal.

26

Final project

Turn:
• Players alternate turns

• The player whose turn it is moves one of their pieces:
• Move:

The piece goes from the tile it’s on to an empty tile

• Capture:
The piece goes from the tile it’s on to a tile with an opponent’s piece,
and the opponent’s piece is removed from the game

• Valid moves vary from piece (type) to piece

• For most pieces valid move and capture shapes are the same

Piece.h
...
namespace Chess
{
 class Piece
 {
 public:
 ...
 bool is_white() const { ... }
 virtual bool legal_move_shape(...) const = 0;
 virtual bool legal_capture_shape(...) const
 { return legal_move_shape(...); }
 virtual char to_ascii() const = 0;
 ...
 };
}

Note:
1. Piece is an abstract class because legal_move_shape is pure virtual.
2. By default legal_capture_shape just checks if the move shape is legal.

Queen, King, Bishop, Knight, Rook,
and Pawn all derive from Piece.

King.h
namespace Chess
{
 class King : public Piece
 {
 ...
 };
}

Bishop.h
namespace Chess
{
 class Bishop : public Piece
 {
 ...
 };
}

Rook.h
namespace Chess
{
 class Rook : public Piece
 {
 ...
 };
}

Queen.h
namespace Chess
{
 class Queen : public Piece
 {
 ...
 };
}

Knight.h
namespace Chess
{
 class Knight : public Piece
 {
 ...
 };
}

Pawn.h
namespace Chess
{
 class Pawn : public Piece
 {
 ...
 };
}

27

Final project

Turn:
• Players alternate turns

• The player whose turn it is moves one of their pieces:
• Move:

The piece goes from the tile it’s on to an empty tile

• Capture:
The piece goes from the tile it’s on to a tile with an opponent’s piece,
and the opponent’s piece is removed from the game

• Valid moves vary from piece (type) to piece

• For most pieces valid move and capture shapes are the same

Piece.h
...
namespace Chess
{
 class Piece
 {
 public:
 ...
 bool is_white() const { ... }
 virtual bool legal_move_shape(...) const = 0;
 virtual bool legal_capture_shape(...) const
 { return legal_move_shape(...); }
 virtual char to_ascii() const = 0;
 ...
 };
}

Note:
1. Piece is an abstract class because legal_move_shape is pure virtual.
2. By default legal_capture_shape just checks if the move shape is legal.

Queen, King, Bishop, Knight, Rook,
and Pawn all derive from Piece.

For each of the derived classes, you
will define the legal_move_shape
member function.

If it needs it, you will also override the
legal_capture_shape member
function.

King.h
namespace Chess
{
 class King : public Piece
 {
 ...
 };
}

Bishop.h
namespace Chess
{
 class Bishop : public Piece
 {
 ...
 };
}

Rook.h
namespace Chess
{
 class Rook : public Piece
 {
 ...
 };
}

Queen.h
namespace Chess
{
 class Queen : public Piece
 {
 ...
 };
}

Knight.h
namespace Chess
{
 class Knight : public Piece
 {
 ...
 };
}

Pawn.h
namespace Chess
{
 class Pawn : public Piece
 {
 ...
 };
}

28

Final project

At each turn:
• Identify whether checkmate has happened

• Identify whether a player is in check

• Identify whether stalemate has happened

• Query the player until they provide legal move/capture (or they quit)

29

Final project

At each turn:
• Identify whether checkmate has happened

• Identify whether a player is in check

• Identify whether stalemate has happened

• Query the player until they provide legal move/capture (or they quit)

main.cpp
...

int main(int argc , char* argv[])
{
 ...
 while(!game_over)
 {
 ...
 game.get_board().display(); // Draw the board
 ...
 if (game.turn_white()) std::cout << "White's move." << std::endl;
 else std::cout << "Black's move." << std::endl;
 …
 if (game.in_mate(game.turn_white())) { ... }
 else if(game.in_check(game.turn_white())) { ... }
 else if(game.in_stalemate(game.turn_white())) { ... }
 ...
 game.make_move(...);
 }
}

Note:
The main function does not
switch the players. You do that
once a successful move has been
made (in make_move).

You will define the:
• in_mate,
• in_check,
• in_stalemate, and
• make_move
member functions for the Game
class.

30

Final project

in_check:

A player is in check if:
• It’s the player’s turn

• The player’s king is under attack ⇔ There’s a legal capture move the
opponent can make that would take the player’s king

• There is a legal move/capture the player can do that would make the king not
be under under attack

⇒ If a player is in check, they have to move/capture to get out of it.

31

Final project

in_mate:

A player is in checkmate if:
• It’s the player’s turn

• The player’s king is under attack ⇔ There’s a legal capture move the
opponent can make that would take the player’s king

• There is no legal move/capture the player can do that would make the king
not be under attack

⇒ If a player is in mate, they lose.

32

Final project

in_stalemate:

A player is in stalemate if:
• It’s the player’s turn

• The player’s king is not under attack

• There is no legal move/capture the player can do that would make the king
not be under attack

⇒ If a player is in mate, it’s a tie.

33

Final project

make_move:

A move is legal if:
• The player moves their own piece

• It has a legal move shape (if there is no piece is at the endpoint)

• It has a legal capture shape (if there is an opponent’s piece is at the endpoint)

• It does not pass over other pieces (if it moves horizontally, vertically, or
diagonally)

• It does not expose the player’s king to attack

34

Final project

make_move:

A move is legal if:
• The player moves their own piece

• It has a legal move shape (if there is no piece is at the endpoint)

• It has a legal capture shape (if there is an opponent’s piece is at the endpoint)

• It does not pass over other pieces (if it moves horizontally, vertically, or
diagonally)

• It does not expose the player’s king to attack

Hint:
✓ You have already implemented the in_check member function.
 You don’t want to make the move and invoke the in_check member function,

because if the move does put the player in check, you will need to “unwind” it.
⇒ Make a copy of the Board, make the move on the copy, and check if the move puts

you in check there.

35

Final project

make_move:

A move is legal if:
• The player moves their own piece

• It has a legal move shape (if there is no piece is at the endpoint)

• It has a legal capture shape (if there is an opponent’s piece is at the endpoint)

• It does not pass over other pieces (if it moves horizontally, vertically, or
diagonally)

• It does not expose the player’s king to attack

Hint:
✓ You have already implemented the in_check member function.
 You don’t want to make the move and invoke the in_check member function,

because if the move does put the player in check, you will need to “unwind” it.
⇒ Make a copy of the Board, make the move on the copy, and check if the move puts

you in check there.

Note:
The make_move member function will try to make the move. If the move
is not legal, it will throw an exception. It is your responsibility to manage
the exception handling.

36

Final project

Representation of a position:

A position on the board is indexed by a pair of values:
• The first is a letter in the range

{‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’} (all caps)
specifying the column.

• The second is a number in the range
{‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’}
specifying the row

A1 B1 C1 D1 E1 F1 G1 H1

A2 B2 C2 D2 E2 F2 G2 H2

A3 B3 C3 D3 E3 F3 G3 H3

A4 B4 C4 D4 E4 F4 G4 H4

A5 B5 C5 D5 E5 F5 G5 H5

A6 B6 C6 D6 E6 F6 G6 H6

A7 B7 C7 D7 E7 F7 G7 H7

A8 B8 C8 C8 E8 F8 G8 H8

Note:
In the game, a position is represented by a
typedef std::pair< char , char > Position;

37

Final project

Representation of the games state:

The Board class stores the game state.

The state is represented as a std::map:
• Keys: Positions

• Values: Piece pointers.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

38

Final project

Representation of the games state:

You will define the operator:

 const Piece *operator() (const Position &position) const;

This returns a pointer to the Piece at the prescribed position, if there is
a piece there.

Otherwise it returns a nullptr.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

39

Final project

Representation of the games state:

You will define the member function:

 bool add_piece(const Position &position , const char &piece_designator);

This tries to add a derived Piece of type specified by
piece_designator to the board.

It returns false if either the position is off the board or there is already
a Piece at the prescribed position.

It returns true if the derived Piece was successfully added.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

40

Final project

Representation of the games state:

You will define the member function:

 bool add_piece(const Position &position , const char &piece_designator);

This tries to add a derived Piece of type specified by
piece_designator to the board.

It returns false if either the position is off the board or there is already
a Piece at the prescribed position.

It returns true if the derived Piece was successfully added.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

The piece_designator is a char:
• ‘K’/‘k’: king
• ‘Q’/‘q’: queen
• ‘B’/‘b’: bishop
• ‘N’/‘n’: knight
• ‘R’/‘r’: rook
• ‘P’/‘p’: pawn
• ‘M’/‘m’: mystery

Upper-case is white and lower-case is black

Piece.h
namespace Chess
{
 class Piece
 {
 public:
 bool is_white() const { ... }
 virtual bool legal_move_shape(...) const = 0;
 virtual bool legal_capture_shape(...) const
 { return legal_move_shape(...); }
 virtual char to_ascii() const = 0;
 ...
 };
}

41

Final project

Representation of the games state:

You will define the member function:

 void display() const;

Draws the board to std::cout.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

42

Final project

Representation of the games state:

You will define the member function:

 bool has_valid_kings() const;

Checks that there is exactly one white King and one black King on the
board.

Board.h
...
namespace Chess
{
 class Board
 {
 ...
 private:
 std::map< Position , Piece * > occ;
 };
}

43

Final project

The Mystery class:

Assuming you have implemented your code correctly, we should be
able to introduce our own piece, with its own legal_move_shape
member function (and possibly legal_capture_shape), and play it
within your chess game.

Mystery.h
...
namespace Chess
{
 class Mystery : public Piece
 {
 public:
 bool legal_move_shape(const Position &start , const Position &end) const;
 ...
 };
} 44

	Slide 1: Intermediate Programming Day 34
	Slide 2: Outline
	Slide 3: Exercise 33
	Slide 4: Exercise 33
	Slide 5: Exercise 33
	Slide 6: Exercise 33
	Slide 7: Outline
	Slide 8: OO Design & UML
	Slide 9: OO Design & UML
	Slide 10: OO Design & UML
	Slide 11: OO Design & UML
	Slide 12: OO Design & UML
	Slide 13: OO Design & UML
	Slide 14: OO Design & UML
	Slide 15: OO Design & UML
	Slide 16: OO Design & UML
	Slide 17: OO Design & UML
	Slide 18: Outline
	Slide 19: Review questions
	Slide 20: Review questions
	Slide 21: Review questions
	Slide 22: Review questions
	Slide 23: Outline
	Slide 24: Final project
	Slide 25: Final project
	Slide 26: Final project
	Slide 27: Final project
	Slide 28: Final project
	Slide 29: Final project
	Slide 30: Final project
	Slide 31: Final project
	Slide 32: Final project
	Slide 33: Final project
	Slide 34: Final project
	Slide 35: Final project
	Slide 36: Final project
	Slide 37: Final project
	Slide 38: Final project
	Slide 39: Final project
	Slide 40: Final project
	Slide 41: Final project
	Slide 42: Final project
	Slide 43: Final project
	Slide 44: Final project

