
Intermediate Programming
Day 29

Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions

2

Exercise 28

Define the constructor.

grade_list.cpp
...
GradeList::GradeList(int capacity) : capacity(capacity) , count(0)
{
 assert(capacity>0);
 grades = new double[capacity];
 assert(grades);
}
...

3

Exercise 28

Define the add member functions.

grade_list.cpp
...
void GradeList::add(double grade)
{
 if(count==capacity)
 {
 capacity *=2;
 double *temp = new double[capacity];
 for(int i=0 ; i<count ; i++) temp[i] = grades[i];
 delete[] grades;
 grades = temp;
 }
 grades[count++] = grade;
}
void GradeList::add(int howmany , double *grades)
{
 for(int i=0 ; i<howmany ; i++) add(grades[i]);
}
...

4

Exercise 28

Define the clear member function.

grade_list.cpp
...
void GradeList::clear(void)
{
 delete[] grades;
 capacity = 1;
 grades = new double[capacity];
 assert(grades);
 count = 0;
}
...

5

Exercise 28

Define the clear member function.

grade_list.cpp
...
void GradeList::clear(void)
{
 delete[] grades;
 capacity = 1;
 grades = new double[capacity];
 assert(grades);
 count = 0;
}
...

>> valgrind –-leak-check=full ./main1
...
==1538562==
==1538562== HEAP SUMMARY:
==1538562== in use at exit: 64 bytes in 1 blocks
==1538562== total heap usage: 9 allocs, 8 frees, 74,016 bytes allocated
==1538562==
==1538562== 64 bytes in 1 blocks are definitely lost in loss record 1 of 1
==1538562== at 0x484322F: operator new[](unsigned long) (vg_replace_malloc.c:640)
==1538562== by 0x401757: GradeList::add(double) (grade_list.cpp:44)
==1538562== by 0x40183F: GradeList::add(int, double*) (grade_list.cpp:59)
==1538562== by 0x401431: main (main1.cpp:24)
==1538562==
==1538562== LEAK SUMMARY:
==1538562== definitely lost: 64 bytes in 1 blocks
==1538562== indirectly lost: 0 bytes in 0 blocks
==1538562== possibly lost: 0 bytes in 0 blocks
==1538562== still reachable: 0 bytes in 0 blocks
==1538562== suppressed: 0 bytes in 0 blocks
==1538562==
==1538562== For lists of detected and suppressed errors, rerun with: -s
==1538562== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
>>

6

Exercise 28

Declare and define the destructor.

grade_list.cpp
...
GradeList::~GradeList(void){ delete[] grades; }
...

grade_list.h
...
class GradeList
{
public:
 ...
 ~GradeList(void);
 ...
};
...

7

Exercise 28

Declare and define the destructor.

grade_list.cpp
...
GradeList::~GradeList(void){ delete[] grades; }
...

grade_list.h
...
class GradeList
{
public:
 ...
 ~GradeList(void);
 ...
};
...>> valgrind –-leak-check=full ./main1

...
==1537987==
==1537987== HEAP SUMMARY:
==1537987== in use at exit: 0 bytes in 0 blocks
==1537987== total heap usage: 9 allocs, 9 frees, 74,016 bytes allocated
==1537987==
==1537987== All heap blocks were freed -- no leaks are possible
==1537987==
==1537987== For lists of detected and suppressed errors, rerun with: -s
==1537987== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
>>

8

Exercise 28

Declare and define the default constructor.

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList(int capcity);
 ...
};
...

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList(int capacity=1);
 ...
};
...

9

Exercise 28

Declare and define the begin and end member functions.

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList(int capacity=1);
 double *begin(void){ return grades; }
 double * end(void){ return grades+count; };
 ...
};
...

10

Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions

11

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

12

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.
• As opposed to the default constructor,

a copy constructor will be created even
if other (e.g. non-default) constructors
are defined.

rectangle.h
#ifndef RECTANGLE_INCLUDED
#define RECTANGLE_INCLUDED
class Rectangle
{
 double _w , _h;
public:
 Rectangle(double w=0 , double h=0)
 : _w(w) , _h(h) { }
};
#endif // RECTANGLE_INCLUDED

main.cpp
#include <iostream>
#include “rectangle.h”
int main(void)
{
 Rectangle r1(10,20); // non-default ctor
 Rectangle r2(r1); // copy ctor:
 // _w and _h copied
 // into r2 from r1
 return 1;
}

13

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array(int s)
 : sz(s) , values(new int [sz]) {}
 ~Array(void){ delete[] values; }
};
int main(void)
{
 Array a(10);
 Array b(a);
 return 0;
}

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>

14

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array(int s)
 : sz(s) , values(new int [sz]) {}
 ~Array(void){ delete[] values; }
};
int main(void)
{
 Array a(10);
 Array b(a);
 return 0;
}

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>

>> valgrind --leak-check=full ./a.out
...
==1568619== Invalid free() / delete / delete[] / realloc()
==1568619== at 0x484565B: operator delete[](void*) (vg_replace_malloc.c:1103)
==1568619== by 0x401290: Array::~Array() (foo.cpp:7)
==1568619== by 0x4011BC: main (foo.cpp:14)
==1568619== Address 0x4db6c80 is 0 bytes inside a block of size 40 free'd
==1568619== at 0x484565B: operator delete[](void*) (vg_replace_malloc.c:1103)
==1568619== by 0x401290: Array::~Array() (foo.cpp:7)
==1568619== by 0x4011B0: main (foo.cpp:14)
==1568619== Block was alloc'd at
==1568619== at 0x484322F: operator new[](unsigned long) (vg_replace_malloc.c:640)
==1568619== by 0x401259: Array::Array(int) (foo.cpp:6)
==1568619== by 0x40118F: main (foo.cpp:11)
...
>>

15

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array(int s)
 : sz(s) , values(new int [sz]) {}
 ~Array(void){ delete[] values; }
};
int main(void)
{
 Array a(10);
 Array b(a);
 return 0;
}

The default constructor sets b.values equal to a.values so both point to the same memory.
⇒ When destructor is called for a, it tries to delete memory that was already deleted when

the destructor for b was called.

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>

16

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array(int s)
 : sz(s) , values(new int [sz]) {}
 Array(const Array &a)
 : sz(a.sz) , values(new int[sz])
 {
 for(unsigned int i=0 ; i<sz ; i++)
 values[i] = a.values[i];
 }
 ~Array(void){ delete[] values; }
};
int main(void)
{
 Array a(10);
 Array b(a);
 return 0;
}

17

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array(int s)
 : sz(s) , values(new int [sz]) {}
 Array(const Array &a)
 : sz(a.sz) , values(new int[sz])
 {
 for(unsigned int i=0 ; i<sz ; i++)
 values[i] = a.values[i];
 }
 ~Array(void){ delete[] values; }
};
int main(void)
{
 Array a(10);
 Array b(a);
 return 0;
}

>> valgrind --leak-check=full ./a.out
...
==1570511== HEAP SUMMARY:
==1570511== in use at exit: 0 bytes in 0 blocks
==1570511== total heap usage: 3 allocs, 3 frees, 72,784 bytes allocated
==1570511==
==1570511== All heap blocks were freed -- no leaks are possible
==1570511==
==1570511== For lists of detected and suppressed errors, rerun with: -s
==1570511== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
>>

18

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case. 19

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 20

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 21

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 22

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 23

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 24

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 25

Copy Constructor

In addition to the default and non-default constructors C++ supports a
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S(void){ cout << “default ctor called” << endl; }
 S(const S &s){ cout << “copy ctor called” << endl; }
};

S foo1(void)
{
 S s;
 return s;
}

void foo2(S s){}

int main(void)
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2(s1);
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 26

Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions

27

Overloading

• In C++, the compiler can distinguish between functions which have
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

main.cpp
#include <iostream>
using namespace std;

void PrintType(int){ cout << "int" << endl; }
void PrintType(float){ cout << "float" << endl; }

int main(void)
{
 PrintType(1);
 PrintType(1.f);
 return 0;
} >> ./a.out

int
float
>> 28

*Note: a decimal number appended with an “f” is interpreted as a float.
Otherwise it’s interpreted as a double.

Overloading

• In C++, the compiler can distinguish between functions which have
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call
• Note:

If the argument type does not match one of
the types with which the function is defined,
the compiler won’t know which to cast to

main.cpp
#include <iostream>
using namespace std;

void PrintType(int){ cout << "int" << endl; }
void PrintType(float){ cout << "float" << endl; }

int main(void)
{
 PrintType(1.0);
 return 0;
}>> ++ main.cpp -std=c++11 -pedantic -Wall -Wextra

main.cpp:9:18: error: call of overloaded âPrintType(double)â is ambiguous
 PrintType(1.0);
 ^
... 29

Overloading

• In C++, the compiler can distinguish between functions which have
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

main.cpp
#include <iostream>
using namespace std;

int GetType(void){ return 1; }
float GetType(void){ return 1.f; }

int main(void)
{
 int i = GetType();
 float f = GetType();
 return 0;
}

>> g++ -std=c++11 -Wall -Wextra main.cpp
main.cpp: In function float GetType() :
main.cpp:5:7: error: ambiguating new declaration of float GetType()
 float GetType (void){ return 1.f; }
 ^~~
>> 30

Overloading

• In C++, the compiler can distinguish between functions which have
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

• You can overload member functions (and
constructors).

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct MyStruct
{
 void print(int) { cout << “int” << endl; }
 void print(float) { cout << “float” << endl; }
};

int main(void)
{
 MyStruct ms;
 ms.print(1);
 ms.print(1.f);
 return 0;
} >> ./a.out

int
float
>>

31

Overloading

• In C++, the compiler can distinguish between functions which have
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

• You can overload member functions (and
constructors).

• You can overload based on whether the
argument, or even the member function
itself, is const. – the const designator is
part of the signature.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct MyStruct
{
 void print() const { cout << “const” << endl; }
 void print() { cout << “non-const” << endl; }
};
void PrintConst(const MyStruct &ms)
{
 ms.print();
}
void PrintNonConst(MyStruct &ms)
{
 ms.print();
}

int main(void)
{
 MyStruct ms;
 PrintConst(ms);
 PrintNonConst(ms);
 return 0;
}

>> ./a.out
const
non-const
>>

32

Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions

33

Overloading

• Some classes "naturally" define operators
• Using full-fledged names can get cumbersome and hard to read

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float x(void) const { return _v[0]; }
 float y(void) const { return _v[1]; }
};
Point2D Add(Point2D p1 , Point2D p2);
Point2D Scale(Point2D p , float s);

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = Scale(Add(p,q) , 0.5f);
 cout << "(" << avg.x() << " , " << avg.y() << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>> 34

Overloading

• In C++, using the keyword operator, we can overload operators like
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> (<operator arg(s)>)
 {
 <operator body>
 }

35

Overloading

• In C++, using the keyword operator, we can overload operators like
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> (<operator arg(s)>)
 {
 <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = (p + q) / 2;
 cout << "(" << avg[0] << " , " << avg[1] << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float operator[] (int i) const;
};
Point2D operator + (Point2D p1 , Point2D p2);
Point2D operator - (Point2D p1 , Point2D p2);
Point2D operator * (Point2D p , float s);
Point2D operator / (Point2D p , float s);
Point2D operator * (float s , Point2D p);

36

Overloading

• In C++, using the keyword operator, we can overload operators like
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> (<operator arg(s)>)
 {
 <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = (p + q) / 2;
 cout << "(" << avg[0] << " , " << avg[1] << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float operator[] (int i) const;
};
Point2D operator + (Point2D p1 , Point2D p2);
Point2D operator - (Point2D p1 , Point2D p2);
Point2D operator * (Point2D p , float s);
Point2D operator / (Point2D p , float s);
Point2D operator * (float s , Point2D p);

37

Overloading

• In C++, using the keyword operator, we can overload operators like
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> (<operator arg(s)>)
 {
 <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = (p + q) / 2;
 cout << "(" << avg[0] << " , " << avg[1] << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float operator[] (int i) const;
};
Point2D operator + (Point2D p1 , Point2D p2);
Point2D operator - (Point2D p1 , Point2D p2);
Point2D operator * (Point2D p , float s);
Point2D operator / (Point2D p , float s);
Point2D operator * (float s , Point2D p);

38

Overloading

• In C++, using the keyword operator, we can overload operators like
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> (<operator arg(s)>)
 {
 <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = (p + q) / 2;
 cout << "(" << avg[0] << " , " << avg[1] << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);

float operator[] (int i) const;
};
Point2D operator + (Point2D p1 , Point2D p2);
Point2D operator - (Point2D p1 , Point2D p2);
Point2D operator * (Point2D p , float s);
Point2D operator / (Point2D p , float s);
Point2D operator * (float s , Point2D p);

39

Overloading

• We can also have class methods be operators
• The first argument is the object itself

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = (p + q) / 2;
 cout << "(" << avg[0] << " , " << avg[1] << ")" << endl;
 return 0;
}

>> ./a.out
(1.5 , 2.5)
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float operator[] (int i) const;
 Point2D operator + (Point2D p) const;
 Point2D operator - (Point2D p) const;
 Point2D operator * (float s) const;
 Point2D operator / (float s) const;
};
Point2D operator * (float s , Point2D p);

40

Overloading

• In terms of implementation:

Point2D.cpp
…
Point2D::Point2D(float x , float y){ _v[0] = x , _v[1] = y };
float Point2D::operator [](int i) const
{
 assert(i==0 || i==1);
 return _v[i];
}
Point2D Point2D::operator + (Point2D p) const
{
 return Point2D(_v[0] + p._v[0] , _v[1] + p._v[1]);
}
Point2D Point2D::operator * (float s) const
{
 return Point2D(_v[0] * s , _v[1] * s);
}
Point2D Point2D::operator - (Point2D p) const
{
 return operator + (p * -1.f);
}
Point2D Point2D::operator / (float s) const
{
 return operator * (1.f/s);
}
Point2D operator * (float s , Point2D p){ return p*s; }

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D(float x=0 , float y=0);
 float operator[] (int i) const;
 Point2D operator + (Point2D p) const;
 Point2D operator - (Point2D p) const;
 Point2D operator * (float s) const;
 Point2D operator / (float s) const;
};
Point2D operator * (float s , Point2D p);

41

Overloading

• We could also overload the
operators +=, -=, *=, /= etc.

Point2D.cpp
…
Point2D &Point2D::operator += (Point2D p)
{
 _v[0] += p._v[0] ; _v[1] += p._v[1];

return *this;
}
Point2D &Point2D::operator *= (float s)
{
 _v[0] *= s ; _v[1] *= s;

return *this;
}
Point2D &Point2D::operator -= (Point2D p)
{

return operator += (p * -1.f);
}
Point2D &Point2D::operator /= (float s)
{

return operator *= (1.f/s);
}

Point2D.h
class Point2D
{
 float _v[2];
public:
 …
 Point2D &operator += (Point2D p);
 Point2D &operator -= (Point2D p);
 Point2D &operator *= (float s);
 Point2D &operator /= (float s);
};

Note:
These operators return a reference to the object itself, allowing
us to chain operators like (p+=q) *= 3; 42

Overloading

• We would also like to support streaming output using the << operator
Input:

• A reference to the output
stream

• The object to be written

Output:
• A reference to the output

stream (so we can chain
outputs)

Point2D.h
#include <iostream>
class Point2D
{
 float _v[2];
public:
 friend std::ostream& operator << (std::ostream & , Point2D);
 …
};

Point2D.cpp
...
std::ostream& operator << (std::ostream &os , Point2D p)
{
 return os << "(" << p[0] << " , " << p[1] << ")";
} 43

Overloading

• We would also like to support streaming output using the << operator
Input:

• A reference to the output
stream

• The object to be written

Output:
• A reference to the output

stream (so we can chain
outputs)

• Using the friend keyword,
we can give an external
function, operator, or class
access to the private class
members

Point2D.h
#include <iostream>
class Point2D
{
 float _v[2];
public:

friend std::ostream& operator << (std::ostream & , Point2D);
 …
};

Point2D.cpp
...
std::ostream& operator << (std::ostream& os , Point2D p)
{
 return os << "(" << p._v[0] << " , " << p._v[1] << ")";
} 44

Overloading

• Operator overloading allows us to write succinct and clear code

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = Scale(Add(p,q) , 0.5f);
 cout << "(" << avg.x() << " , " << avg.y() << ")" << endl;
 return 0;
}

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main(void)
{
 Point2D p(1,2) , q(2,3);
 cout << (p + q) / 2 << endl;
 return 0;
}

45

Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions

46

Review questions

1. What is overloading in C++?

When we create two functions with the same name but different
arguments

47

Review questions

2. Can you overload a function with the same name, same
parameters, but different return type?

No

48

Review questions

3. Is it true that we can overload all the operators of a class?

Almost (operators like "::" and "." cannot be overloaded)

49

Review questions

4. What is a copy constructor? When will it be called?

A copy constructor initializes a new object by copying information from
the argument. It is called when making an explicit call to the copy
constructor, sending an object to a function by argument using pass-by-
value, and returning a class object from a function by value.

50

Review questions

5. What happens if you don't define a copy constructor?

C++ generates a default (shallow) copy constructor that copies over the
individual fields.

51

Review questions

6. What is the friend keyword? When do we use it?

This keyword signifies that some other class/function has access to an
object's private members. It's used when we would like to define
functions (like stream insertion/extraction) that need access to the
private data but are not (can't be) members of the class.

52

Exercise 29

• Website -> Course Materials -> Exercise 29

53

	Slide 1: Intermediate Programming Day 29
	Slide 2: Outline
	Slide 3: Exercise 28
	Slide 4: Exercise 28
	Slide 5: Exercise 28
	Slide 6: Exercise 28
	Slide 7: Exercise 28
	Slide 8: Exercise 28
	Slide 9: Exercise 28
	Slide 10: Exercise 28
	Slide 11: Outline
	Slide 12: Copy Constructor
	Slide 13: Copy Constructor
	Slide 14: Copy Constructor
	Slide 15: Copy Constructor
	Slide 16: Copy Constructor
	Slide 17: Copy Constructor
	Slide 18: Copy Constructor
	Slide 19: Copy Constructor
	Slide 20: Copy Constructor
	Slide 21: Copy Constructor
	Slide 22: Copy Constructor
	Slide 23: Copy Constructor
	Slide 24: Copy Constructor
	Slide 25: Copy Constructor
	Slide 26: Copy Constructor
	Slide 27: Outline
	Slide 28: Overloading
	Slide 29: Overloading
	Slide 30: Overloading
	Slide 31: Overloading
	Slide 32: Overloading
	Slide 33: Outline
	Slide 34: Overloading
	Slide 35: Overloading
	Slide 36: Overloading
	Slide 37: Overloading
	Slide 38: Overloading
	Slide 39: Overloading
	Slide 40: Overloading
	Slide 41: Overloading
	Slide 42: Overloading
	Slide 43: Overloading
	Slide 44: Overloading
	Slide 45: Overloading
	Slide 46: Outline
	Slide 47: Review questions
	Slide 48: Review questions
	Slide 49: Review questions
	Slide 50: Review questions
	Slide 51: Review questions
	Slide 52: Review questions
	Slide 53: Exercise 29

