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Exercise 28

Define the constructor.

grade_list.cpp
...
GradeList::GradeList( int capacity ) : capacity(capacity) , count(0)
{
 assert( capacity>0 );
 grades = new double[ capacity ];
 assert( grades );
}
...
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Exercise 28

Define the add member functions.

grade_list.cpp
...
void GradeList::add( double grade )
{
 if( count==capacity )
 {
  capacity *=2;
  double *temp = new double[ capacity ];
  for( int i=0 ; i<count ; i++ ) temp[i] = grades[i];
  delete[] grades;
  grades = temp;
 }
 grades[ count++ ] = grade;
}
void GradeList::add( int howmany , double *grades )
{
 for( int i=0 ; i<howmany ; i++ ) add( grades[i] );
}
...
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Exercise 28

Define the clear member function.

grade_list.cpp
...
void GradeList::clear( void )
{
 delete[] grades;
 capacity = 1;
 grades = new double[capacity];
 assert( grades );
 count = 0;
}
...
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Exercise 28

Define the clear member function.

grade_list.cpp
...
void GradeList::clear( void )
{
 delete[] grades;
 capacity = 1;
 grades = new double[capacity];
 assert( grades );
 count = 0;
}
...

>> valgrind –-leak-check=full ./main1
...
==1538562==
==1538562== HEAP SUMMARY:
==1538562==     in use at exit: 64 bytes in 1 blocks
==1538562==   total heap usage: 9 allocs, 8 frees, 74,016 bytes allocated
==1538562==
==1538562== 64 bytes in 1 blocks are definitely lost in loss record 1 of 1
==1538562==    at 0x484322F: operator new[](unsigned long) (vg_replace_malloc.c:640)
==1538562==    by 0x401757: GradeList::add(double) (grade_list.cpp:44)
==1538562==    by 0x40183F: GradeList::add(int, double*) (grade_list.cpp:59)
==1538562==    by 0x401431: main (main1.cpp:24)
==1538562==
==1538562== LEAK SUMMARY:
==1538562==    definitely lost: 64 bytes in 1 blocks
==1538562==    indirectly lost: 0 bytes in 0 blocks
==1538562==      possibly lost: 0 bytes in 0 blocks
==1538562==    still reachable: 0 bytes in 0 blocks
==1538562==         suppressed: 0 bytes in 0 blocks
==1538562==
==1538562== For lists of detected and suppressed errors, rerun with: -s
==1538562== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
>>
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Exercise 28

Declare and define the destructor.

grade_list.cpp
...
GradeList::~GradeList( void ){ delete[] grades; }
...

grade_list.h
...
class GradeList
{
public:
 ...
 ~GradeList( void );
 ...
};
...
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Exercise 28

Declare and define the destructor.

grade_list.cpp
...
GradeList::~GradeList( void ){ delete[] grades; }
...

grade_list.h
...
class GradeList
{
public:
 ...
 ~GradeList( void );
 ...
};
...>> valgrind –-leak-check=full ./main1

...
==1537987==
==1537987== HEAP SUMMARY:
==1537987==     in use at exit: 0 bytes in 0 blocks
==1537987==   total heap usage: 9 allocs, 9 frees, 74,016 bytes allocated
==1537987==
==1537987== All heap blocks were freed -- no leaks are possible
==1537987==
==1537987== For lists of detected and suppressed errors, rerun with: -s
==1537987== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
>>
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Exercise 28

Declare and define the default constructor.

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList( int capcity );
 ...
};
...

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList( int capacity=1 );
 ...
};
...
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Exercise 28

Declare and define the begin and end member functions.

grade_list.h
...
class GradeList
{
public:
 ...
 GradeList( int capacity=1 );
 double *begin( void ){ return grades; }
 double *  end( void ){ return grades+count; };
 ...
};
...
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.
• As opposed to the default constructor,

a copy constructor will be created even
if other (e.g. non-default) constructors
are defined.

rectangle.h
#ifndef RECTANGLE_INCLUDED
#define RECTANGLE_INCLUDED
class Rectangle
{
 double _w , _h;
public:
 Rectangle( double w=0 , double h=0 )
  : _w(w) , _h(h) { }
};
#endif // RECTANGLE_INCLUDED

main.cpp
#include <iostream>
#include “rectangle.h”
int main( void )
{
 Rectangle r1(10,20); // non-default ctor
 Rectangle r2(r1); // copy ctor:
      //   _w and _h copied
      //   into r2 from r1
 return 1;
}
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array( int s )
  : sz( s ) , values( new int [sz] ) {}
 ~Array( void ){ delete[] values; }
};
int main( void )
{
 Array a( 10 );
 Array b( a );
 return 0;
}

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array( int s )
  : sz( s ) , values( new int [sz] ) {}
 ~Array( void ){ delete[] values; }
};
int main( void )
{
 Array a( 10 );
 Array b( a );
 return 0;
}

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>

>> valgrind --leak-check=full ./a.out
...
==1568619== Invalid free() / delete / delete[] / realloc()
==1568619==    at 0x484565B: operator delete[](void*) (vg_replace_malloc.c:1103)
==1568619==    by 0x401290: Array::~Array() (foo.cpp:7)
==1568619==    by 0x4011BC: main (foo.cpp:14)
==1568619==  Address 0x4db6c80 is 0 bytes inside a block of size 40 free'd
==1568619==    at 0x484565B: operator delete[](void*) (vg_replace_malloc.c:1103)
==1568619==    by 0x401290: Array::~Array() (foo.cpp:7)
==1568619==    by 0x4011B0: main (foo.cpp:14)
==1568619==  Block was alloc'd at
==1568619==    at 0x484322F: operator new[](unsigned long) (vg_replace_malloc.c:640)
==1568619==    by 0x401259: Array::Array(int) (foo.cpp:6)
==1568619==    by 0x40118F: main (foo.cpp:11)
...
>>
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array( int s )
  : sz( s ) , values( new int [sz] ) {}
 ~Array( void ){ delete[] values; }
};
int main( void )
{
 Array a( 10 );
 Array b( a );
 return 0;
}

The default constructor sets b.values equal to a.values so both point to the same memory.
⇒ When destructor is called for a, it tries to delete memory that was already deleted when 

the destructor for b was called.

>> ./a.out
free(): double free detected in tcache 2
Abort (core dumped)
>>
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array( int s )
  : sz( s ) , values( new int [sz] ) {}
 Array( const Array &a )
  : sz( a.sz ) , values( new int[sz] )
  {
   for( unsigned int i=0 ; i<sz ; i++ )
    values[i] = a.values[i];
  }
 ~Array( void ){ delete[] values; }
};
int main( void )
{
 Array a( 10 );
 Array b( a );
 return 0;
}
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

• If you don’t define one, C++ will create
an implicitly defined copy constructor
for you, which (recursively) copy-
constructs the member data.

• But you may want to create your own.

main.cpp
#include <iostream>
class Array
{
public:
 int sz , *values;
 Array( int s )
  : sz( s ) , values( new int [sz] ) {}
 Array( const Array &a )
  : sz( a.sz ) , values( new int[sz] )
  {
   for( unsigned int i=0 ; i<sz ; i++ )
    values[i] = a.values[i];
  }
 ~Array( void ){ delete[] values; }
};
int main( void )
{
 Array a( 10 );
 Array b( a );
 return 0;
}

>> valgrind --leak-check=full ./a.out
...
==1570511== HEAP SUMMARY:
==1570511==     in use at exit: 0 bytes in 0 blocks
==1570511==   total heap usage: 3 allocs, 3 frees, 72,784 bytes allocated
==1570511==
==1570511== All heap blocks were freed -- no leaks are possible
==1570511==
==1570511== For lists of detected and suppressed errors, rerun with: -s
==1570511== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
>>
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Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case. 19



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 20



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 21



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 22



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 23



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 24



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 25



Copy Constructor

In addition to the default and non-default constructors C++ supports a 
copy constructor to construct one object from another.

It is called when:
• Constructing an object using

another (including using the
assignment operator, “=”,
when declaring a variable)

• Passing an argument to a
function by value

• [Possibly] returning an object
from a function (defined on the
function stack)*

*Return value optimization may keep it from being invoked in this case.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct S
{
 S( void ){ cout << “default ctor called” << endl; }
 S( const S &s ){ cout << “copy ctor called” << endl; }
};

S foo1( void )
{
 S s;
 return s;
}

void foo2( S s ){}

int main( void )
{
 S s1;
 S s2(s1) , s3=s1;
 s1 = foo1();
 foo2( s1 );
 return 1;
}

>> ./a.out
default ctor called
copy ctor called
copy ctor called
default ctor called
copy ctor called
>> 26
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Overloading

• In C++, the compiler can distinguish between functions which have 
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

main.cpp
#include <iostream>
using namespace std;

void PrintType( int ){ cout << "int" << endl; }
void PrintType( float ){ cout << "float" << endl; }

int main(void)
{
 PrintType( 1 );
 PrintType( 1.f );
 return 0;
} >> ./a.out 

int
float
>> 28

*Note: a decimal number appended with an “f” is interpreted as a float.
Otherwise it’s interpreted as a double.



Overloading

• In C++, the compiler can distinguish between functions which have 
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call
• Note:

If the argument type does not match one of
the types with which the function is defined,
the compiler won’t know which to cast to

main.cpp
#include <iostream>
using namespace std;

void PrintType( int ){ cout << "int" << endl; }
void PrintType( float ){ cout << "float" << endl; }

int main(void)
{
 PrintType( 1.0 );
 return 0;
}>> ++ main.cpp -std=c++11 -pedantic -Wall -Wextra

main.cpp:9:18: error: call of overloaded âPrintType(double)â is ambiguous
   PrintType( 1.0 );
                  ^
... 29



Overloading

• In C++, the compiler can distinguish between functions which have 
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

main.cpp
#include <iostream>
using namespace std;

int GetType( void ){ return 1; }
float GetType( void ){ return 1.f; }

int main(void)
{
 int i = GetType();
 float f = GetType();
 return 0;
}

>>  g++ -std=c++11 -Wall -Wextra main.cpp
main.cpp: In function float GetType() :
main.cpp:5:7: error: ambiguating new declaration of float GetType()
 float GetType ( void ){ return 1.f; }
       ^~~
>> 30



Overloading

• In C++, the compiler can distinguish between functions which have 
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

• You can overload member functions (and
constructors).

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct MyStruct
{
 void print( int ) { cout << “int” << endl; }
 void print( float ) { cout << “float” << endl; }
};

int main(void)
{
 MyStruct ms;
 ms.print( 1 );
 ms.print( 1.f );
 return 0;
} >>  ./a.out

int
float
>>
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Overloading

• In C++, the compiler can distinguish between functions which have 
the same name but different numbers/types of parameters.
The functions have different signatures.
• The compiler will use the argument types

to infer which function to call

• It cannot distinguish between functions
based on their output type – the return
type is not part of the signature.

• You can overload member functions (and
constructors).

• You can overload based on whether the
argument, or even the member function
itself, is const. – the const designator is
part of the signature.

main.cpp
#include <iostream>
using std::cout ; using std::endl;

struct MyStruct
{
 void print() const { cout << “const” << endl; }
 void print() { cout << “non-const” << endl; }
};
void PrintConst( const MyStruct &ms )
{
 ms.print();
}
void PrintNonConst( MyStruct &ms )
{
 ms.print();
}

int main(void)
{
 MyStruct ms;
 PrintConst( ms );
 PrintNonConst( ms );
 return 0;
}

>>  ./a.out
const
non-const
>>
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Overloading

• Some classes "naturally" define operators
• Using full-fledged names can get cumbersome and hard to read

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float x( void ) const { return _v[0]; }
 float y( void ) const { return _v[1]; }
};
Point2D Add( Point2D p1 , Point2D p2 );
Point2D Scale( Point2D p , float s );

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = Scale( Add(p,q) , 0.5f );
 cout << "( " << avg.x() << " , " << avg.y() << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>> 34



Overloading

• In C++, using the keyword operator, we can overload operators like 
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> ( <operator arg(s)> )
 {
  <operator body>
 }

35



Overloading

• In C++, using the keyword operator, we can overload operators like 
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> ( <operator arg(s)> )
 {
  <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = ( p + q ) / 2;
 cout << "( " << avg[0] << " , " << avg[1] << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float operator[] ( int i ) const;
};
Point2D operator + ( Point2D p1 , Point2D p2 );
Point2D operator - ( Point2D p1 , Point2D p2 );
Point2D operator * ( Point2D p , float s );
Point2D operator / ( Point2D p , float s );
Point2D operator * ( float s , Point2D p );
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Overloading

• In C++, using the keyword operator, we can overload operators like 
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> ( <operator arg(s)> )
 {
  <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = ( p + q ) / 2;
 cout << "( " << avg[0] << " , " << avg[1] << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float operator[] ( int i ) const;
};
Point2D operator + ( Point2D p1 , Point2D p2 );
Point2D operator - ( Point2D p1 , Point2D p2 );
Point2D operator * ( Point2D p , float s );
Point2D operator / ( Point2D p , float s );
Point2D operator * ( float s , Point2D p );
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Overloading

• In C++, using the keyword operator, we can overload operators like 
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> ( <operator arg(s)> )
 {
  <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = ( p + q ) / 2;
 cout << "( " << avg[0] << " , " << avg[1] << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float operator[] ( int i ) const;
};
Point2D operator + ( Point2D p1 , Point2D p2 );
Point2D operator - ( Point2D p1 , Point2D p2 );
Point2D operator * ( Point2D p , float s );
Point2D operator / ( Point2D p , float s );
Point2D operator * ( float s , Point2D p );
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Overloading

• In C++, using the keyword operator, we can overload operators like 
+, -, *, / , += , -=, *= , /= , < , | , & , [] , () , == , != , << , etc.

 <return type> operator <operator name> ( <operator arg(s)> )
 {
  <operator body>
 }

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = ( p + q ) / 2;
 cout << "( " << avg[0] << " , " << avg[1] << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );

float operator[] ( int i ) const;
};
Point2D operator + ( Point2D p1 , Point2D p2 );
Point2D operator - ( Point2D p1 , Point2D p2 );
Point2D operator * ( Point2D p , float s );
Point2D operator / ( Point2D p , float s );
Point2D operator * ( float s , Point2D p );
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Overloading

• We can also have class methods be operators
• The first argument is the object itself

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = ( p + q ) / 2;
 cout << "( " << avg[0] << " , " << avg[1] << " )" << endl;
 return 0; 
}

>> ./a.out 
( 1.5 , 2.5 )
>>

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float operator[] ( int i ) const;
 Point2D operator + ( Point2D p ) const;
 Point2D operator - ( Point2D p ) const;
 Point2D operator * ( float s ) const;
 Point2D operator / ( float s ) const; 
};
Point2D operator * ( float s , Point2D p );
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Overloading

• In terms of implementation:

Point2D.cpp
…
Point2D::Point2D( float x , float y ){ _v[0] = x , _v[1] = y };
float Point2D::operator []( int i ) const
{
 assert( i==0 || i==1 );
 return _v[i];
}
Point2D Point2D::operator + ( Point2D p ) const
{
 return Point2D( _v[0] + p._v[0] , _v[1] + p._v[1] );
}
Point2D Point2D::operator * ( float s ) const
{
 return Point2D( _v[0] * s , _v[1] * s );
}
Point2D Point2D::operator - ( Point2D p ) const
{
 return operator + ( p * -1.f );
}
Point2D Point2D::operator / ( float s ) const
{
 return operator * (1.f/s);
}
Point2D operator * ( float s , Point2D p ){ return p*s; }

Point2D.h
class Point2D
{
 float _v[2];
public:
 Point2D( float x=0 , float y=0 );
 float operator[] ( int i ) const;
 Point2D operator + ( Point2D p ) const;
 Point2D operator - ( Point2D p ) const;
 Point2D operator * ( float s ) const;
 Point2D operator / ( float s ) const; 
};
Point2D operator * ( float s , Point2D p );
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Overloading

• We could also overload the
operators +=, -=, *=, /= etc.

Point2D.cpp
…
Point2D &Point2D::operator += ( Point2D p )
{
 _v[0] += p._v[0] ; _v[1] += p._v[1];

return *this;
}
Point2D &Point2D::operator *= ( float s )
{
 _v[0] *= s ; _v[1] *= s;

return *this;
}
Point2D &Point2D::operator -= ( Point2D p )
{

return operator += ( p * -1.f );
}
Point2D &Point2D::operator /= ( float s ) 
{

return operator *= (1.f/s);
}

Point2D.h
class Point2D
{
 float _v[2];
public:
 …
 Point2D &operator += ( Point2D p );
 Point2D &operator -= ( Point2D p );
 Point2D &operator *= ( float s );
 Point2D &operator /= ( float s ); 
};

Note:
These operators return a reference to the object itself, allowing
us to chain operators like ( p+=q ) *= 3; 42



Overloading

• We would also like to support streaming output using the << operator
Input:

• A reference to the output
stream

• The object to be written

Output:
• A reference to the output

stream (so we can chain
outputs)

Point2D.h
#include <iostream>
class Point2D
{
 float _v[2];
public:
 friend std::ostream& operator << (std::ostream & , Point2D );
 …
};

Point2D.cpp
...
std::ostream& operator << ( std::ostream &os , Point2D p )
{
 return os << "( " << p[0] << " , " << p[1] << " )";
} 43



Overloading

• We would also like to support streaming output using the << operator
Input:

• A reference to the output
stream

• The object to be written

Output:
• A reference to the output

stream (so we can chain
outputs)

• Using the friend keyword,
we can give an external
function, operator, or class
access to the private class
members

Point2D.h
#include <iostream>
class Point2D
{
 float _v[2];
public:

friend std::ostream& operator << (std::ostream & , Point2D );
 …
};

Point2D.cpp
...
std::ostream& operator << ( std::ostream& os , Point2D p )
{
 return os << "( " << p._v[0] << " , " << p._v[1] << " )";
} 44



Overloading

• Operator overloading allows us to write succinct and clear code

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 Point2D avg = Scale( Add(p,q) , 0.5f );
 cout << "( " << avg.x() << " , " << avg.y() << " )" << endl;
 return 0; 
}

main.cpp
#include <iostream>
#include "Point2D.h"
using namespace std;

int main( void )
{
 Point2D p(1,2) , q(2,3);
 cout << ( p + q ) / 2 << endl;
 return 0; 
}
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Outline

• Exercise 28

• Copy constructor

• Function overloading

• Operator overloading

• Review questions
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Review questions

1. What is overloading in C++?

When we create two functions with the same name but different 
arguments
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Review questions

2. Can you overload a function with the same name, same 
parameters, but different return type?

No
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Review questions

3. Is it true that we can overload all the operators of a class?

Almost (operators like "::" and "." cannot be overloaded)
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Review questions

4. What is a copy constructor? When will it be called?

A copy constructor initializes a new object by copying information from 
the argument. It is called when making an explicit call to the copy 
constructor, sending an object to a function by argument using pass-by-
value, and returning a class object from a function by value.
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Review questions

5. What happens if you don't define a copy constructor?

C++ generates a default (shallow) copy constructor that copies over the 
individual fields.
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Review questions

6. What is the friend keyword? When do we use it?

This keyword signifies that some other class/function has access to an 
object's private members. It's used when we would like to define 
functions (like stream insertion/extraction) that need access to the 
private data but are not (can't be) members of the class.
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Exercise 29

• Website -> Course Materials -> Exercise 29
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