
Intermediate Programming
Day 25

Outline

• Exercise 24

• File I/O

• std::stringstream

• Object Oriented Programming

• Review Questions

2

Exercise 24

Populate counters so
that each entry has:

• Key: collected words

• Value: the number of times that word appears in the file ..

main.cpp
...
void main(void)
{
 typedef map< string , int > s2i;
 typedef s2i::const_iterator s2i_citer;
 s2i counters;
 ...
 string word;
 while(cin >> word) counters[word]++;
 ...
}

3

Exercise 24

Rearrange so that
each entry in the
new map has an
integer key, and
an entire vector of
strings as its value.

main.cpp
...
void main(void)
{
 typedef map< string , int > s2i;
 typedef s2i::const_iterator s2i_citer;
 s2i counters;
 ...
 string word;
 while(cin >> word) counters[word]++;
 ...
 typedef map< int , vector< string > > i2v;
 typedef i2v::const_iterator i2v_citer;

 i2v words_by_freq;
 for(s2i_citer it=counters.cbegin() ; it!=counters.cend() ; it++)
 words_by_freq[it->second].push_back(it->first);
 ...
}

4

Exercise 24

Output the new
map’s contents.

main.cpp
...
void main(void)
{
 typedef map< string , int > s2i;
 typedef s2i::const_iterator s2i_citer;
 s2i counters;
 ...
 string word;
 while(cin >> word) counters[word]++;
 ...
 typedef map< int , vector< string > > i2v;
 typedef i2v::const_iterator i2v_citer;

 i2v words_by_freq;
 for(s2i_citer it=counters.cbegin() ; it!=counters.cend() ; it++)
 words_by_freq[it->second].push_back(it->first);

 typedef vector< string >::const_iterator v_citer;
 for(i2v_citer it=words_by_freq.cbegin() ; it!=words_by_freq.cend() ; it++)
 {
 std::cout << "Frequency: " << it->first << std::endl;
 for(v_citer _it=it->second.cbegin() ; _it!=it->second.cend() ; _it ++)
 std::cout << *_it << std::endl;
 }
 ...
}

5

Exercise 24

Invoke std::sort
from the STL to
sort the contents
of vec2 and compare the implementations.

sort.cpp
...
#include <algorithm>
...
void main(void)
{
 ...

std::sort(vec2.begin() , vec2.end());
 ...
}
... >> ./sort

Enter the count: 100000
Your sort time = 223(ms)
STL's sort time = 57(ms)
>>

6

Outline

• Exercise 24

• File I/O

• std::stringstream

• Object Oriented Programming

• Review Questions

7

File I/O

Recall that in C++ we write/read to/from the command with handles:
• std::cout
• std::cin

using the (overloaded) insertion and extraction operators:
• <<
• >>

8

File I/O

• In C, printf wrote to stdout and scanf read from stdin
• fprintf and fscanf were their counterparts for files

• In C++, we have std::cout and std::cin
• std::ofstream and std::ifstream are their counterparts for files

• These are declared in the file-stream header
 #include <fstream>
which declares classes:
• ofstream: for writing to a file (inherits* from ostream)

• ifstream: for reading from a file (inherits* from istream)

• fstream: for reading and writing to/from a file (inherits* from ostream and istream)

• The class ostream (resp. istream) defines the extraction (resp. insertion)
operator << (resp. >>) so ofstream (resp. ifstream) inherits* it.

• Since fstream derives* from both ostream and istream, it inherits* both.
9

File I/O (std::ofstream) main.cpp
#include <iostream>
#include <fstream>
int main(void)
{
 std::ofstream ofile("hello.txt");
 ofile << "Hello, World!" << std::endl;
 return 0;
}

>> ./a.out
>> cat hello.txt
Hello, World!
>>

10

File I/O (std::ofstream)

• ofstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with the
filename using a "w" flag

main.cpp
#include <iostream>
#include <fstream>
int main(void)
{

std::ofstream ofile("hello.txt");
 ofile << "Hello, World!" << std::endl;
 return 0;
}

>> ./a.out
>> cat hello.txt
Hello, World!
>>

11

File I/O (std::ofstream)

• ofstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with the
filename using a "w" flag

• Since ofstream inherits* from ostream,
anything we can "<<" to an ostream, we
can "<<" to the ofstream

main.cpp
#include <iostream>
#include <fstream>
int main(void)
{
 std::ofstream ofile("hello.txt");

ofile << "Hello, World!" << std::endl;
 return 0;
}

>> ./a.out
>> cat hello.txt
Hello, World!
>>

12

File I/O (std::ofstream)

• ofstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with the
filename using a "w" flag

• Since ofstream inherits* from ostream,
anything we can "<<" to an ostream, we
can "<<" to the ofstream

• ofstream has a destructor* that closes the file
• When an ofstream object goes out of scope (or is deleted), it automatically

closes itself

main.cpp
#include <iostream>
#include <fstream>
int main(void)
{
 std::ofstream ofile("hello.txt");
 ofile << "Hello, World!" << std::endl;
 return 0;
}

>> ./a.out
>> cat hello.txt
Hello, World!
>>

13

File I/O (std::ifstream) main.cpp
#include <iostream>
#include <fstream>
#include <string>
int main(void)
{
 std::ifstream ifile("hello.txt");
 std::string word;
 while(ifile>>word) std::cout << word << ' ';
 std::cout << std::endl;
 return 0;
}

>> ./a.out
Hello, World!
>>

14

File I/O (std::ifstream)

• ifstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with
the filename using a "r" flag

main.cpp
#include <iostream>
#include <fstream>
#include <string>
int main(void)
{

std::ifstream ifile("hello.txt");
 std::string word;
 while(ifile>>word) std::cout << word << ' ';
 std::cout << std::endl;
 return 0;
}

>> ./a.out
Hello, World!
>>

15

File I/O (std::ifstream)

• ifstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with
the filename using a "r" flag

• Since ifstream inherits* from istream,
anything we can ">>" to an istream, we
can ">>" to the ifstream

main.cpp
#include <iostream>
#include <fstream>
#include <string>
int main(void)
{
 std::ifstream ifile("hello.txt");
 std::string word;
 while(ifile>>word) std::cout << word << ' ';
 std::cout << std::endl;
 return 0;
}

>> ./a.out
Hello, World!
>>

16

File I/O (std::ifstream)

• ifstream has a constructor* taking a
string specifying the filename
• Calling the constructor with a filename

string is like calling fopen with
the filename using a "r" flag

• Since ifstream inherits* from istream,
anything we can ">>" to an istream, we
can ">>" to the ifstream

• ifstream has a destructor* that closes the file
• When an ifstream object goes out of scope (or is deleted), it automatically

closes itself

main.cpp
#include <iostream>
#include <fstream>
#include <string>
int main(void)
{
 std::ifstream ifile("hello.txt");
 std::string word;
 while(ifile>>word) std::cout << word << ' ';
 std::cout << std::endl;
 return 0;
}

>> ./a.out
Hello, World!
>>

17

Outline

• Exercise 24

• File I/O

• std::stringstream

• Object Oriented Programming

• Review Questions

18

std::stringstream

• Instead of reading or writing to console, it reads and writes to a
temporary string (“buffer”) stored inside

main.cpp
#include <iostream>
#include <sstream>
int main(void)
{
 std::stringstream ss;
 ss << "Hello, world!" << std::endl;
 std::cout << ss.str();
 return 0;
}

19

std::stringstream

• Instead of reading or writing to console, it reads and writes to a
temporary string (“buffer”) stored inside
• The string buffer can be accessed with the

member function:
 string stringstream::str(void)

main.cpp
#include <iostream>
#include <sstream>
int main(void)
{
 std::stringstream ss;
 ss << "Hello, world!" << std::endl;
 std::cout << ss.str();
 return 0;
}

>> ./a.out
Hello, world!
>>

20

std::stringstream

Since it inherits from both
istream and ostream

• we can insert and extract
data from a stringstream

main.cpp
#include <string>
#include <iostream>
#include <sstream>
int main(void)
{
 std::stringstream ss;
 ss << "Hello" << ' ' << 35 << " world";
 std::string word1, word2;
 int num;
 ss >> word1 >> num >> word2;
 std::cout << word1 << ", " << word2 << '!' << std::endl;
 return 0;
}

>> ./a.out
Hello, world!
>> 21

std::stringstream

• Like the file-stream, the string-stream also comes in flavors that only
do reading or writing:
• istringstream ifstream
• ostringstream ostream

23

Outline

• Exercise 24

• File I/O

• std::stringstream

• Object Oriented Programming

• Review Questions

24

Object Oriented Programming

In C++ classes are similar to structs in C, but additionally support:
• Functionality for acting on the class’s data

• E.g. An ofstream object not only stores information about the output file stream but
also provides functionality for opening/closing the file handle

• Field protection for controlling who has access to a class’s data.
(By default, only the class itself has access.)

• Special functions called constructors which are invoked when an object of a
particular class is created.

• Special functions called destructors which are invoked when an object of a
particular class goes out of scope or is destroyed.

• Inheritance.

25

stringstream

istringstream

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

26

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

• istream and ostream both inherit from ios
• Stream extraction (>>) defined for all istreams

• Stream insertion (<<) defined for all ostreams

stringstream

istringstream

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

27

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

• istream and ostream both inherit from ios
• iostream inherits from both istream and ostream

• multiple inheritance is allowed

stringstream

istringstream

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

28

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

• istream and ostream both inherit from ios
• iostream inherits from both istream and ostream
• Stream extraction (>>) inherited from istream

stringstream

istringstream

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

29

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

• istream and ostream both inherit from ios
• iostream inherits from both istream and ostream
• Stream extraction (>>) inherited from istream
• Stream insertion (<<) inherited from ostream

stringstream

istringstream

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

30

C++ stream class hierarchy

Inheritance diagram for streams – arrows indicate who inherits from
whom (“is-a” relationship).

• istream and ostream both inherit from ios
• iostream inherits from both istream and ostream
• Stream extraction (>>) inherited from istream
• Stream insertion (<<) inherited from ostream
• fstream and stringstream both

inherit from iostream

stringstream

istringstream

ios

istream ostream

iostreamifstream

fstream

ostringstream
ofstream

31

Outline

• Exercise 24

• File I/O

• std::stringstream

• Object Oriented Programming

• Review Questions

32

Review questions

1. How do you read/write files in C++?

Create input / output filestreams

 std::ifstream ifile("hello.txt");

 std::ofstream ofile("hello.txt");

and insert into / extract from the files

 ifile >> str1 >> str2;

 ofile << "Hello, World!" << std::endl;

33

Review questions

2. What is a stringstream in C++?

A stream supporting insertion/extraction, which keeps its data buffered
in a std::string.

34

Review questions

3. How do you extract the contents of a stringstream?

Either use the stream extraction operator ">>", or use the str(void)
member function.

35

Review questions

4. What does a constructor do?

Initializes the resources associated with a class

36

Review questions

5. What does a destructor do?

Releases/deallocates the resources associated with a class

37

Exercise 25

• Website -> Course Materials -> Exercise 25

38

	Slide 1: Intermediate Programming Day 25
	Slide 2: Outline
	Slide 3: Exercise 24
	Slide 4: Exercise 24
	Slide 5: Exercise 24
	Slide 6: Exercise 24
	Slide 7: Outline
	Slide 8: File I/O
	Slide 9: File I/O
	Slide 10: File I/O (std::ofstream)
	Slide 11: File I/O (std::ofstream)
	Slide 12: File I/O (std::ofstream)
	Slide 13: File I/O (std::ofstream)
	Slide 14: File I/O (std::ifstream)
	Slide 15: File I/O (std::ifstream)
	Slide 16: File I/O (std::ifstream)
	Slide 17: File I/O (std::ifstream)
	Slide 18: Outline
	Slide 19: std::stringstream
	Slide 20: std::stringstream
	Slide 21: std::stringstream
	Slide 23: std::stringstream
	Slide 24: Outline
	Slide 25: Object Oriented Programming
	Slide 26: C++ stream class hierarchy
	Slide 27: C++ stream class hierarchy
	Slide 28: C++ stream class hierarchy
	Slide 29: C++ stream class hierarchy
	Slide 30: C++ stream class hierarchy
	Slide 31: C++ stream class hierarchy
	Slide 32: Outline
	Slide 33: Review questions
	Slide 34: Review questions
	Slide 35: Review questions
	Slide 36: Review questions
	Slide 37: Review questions
	Slide 38: Exercise 25

