
Intermediate Programming
Day 16

Outline

• Exercise 16

• Midterm project

2

Exercise 16

Implement length.

list.h
...
unsigned int length(const Node *head);
...

list.c
...
unsigned int length(const Node *head)
{
 unsigned int len = 0;
 while(head) len++ , head = head->next;
 return len;
}
...

list.c
...
unsigned int length(const Node *head)
{
 unsigned int len = 0;
 for(; head ; head=head->next , len++) ;
 return len;
}
...

3

Exercise 16

Implement length recursively.

Base Case:

• The linked list has no elements.

Recursion:

• The length of the whole list is one plus the length of the sub-list
linked off of the next pointer.

list.h
...
unsigned int length(const Node *head);
...

list.c
...
unsigned int length(const Node *head)
{
 if(!head) return 0;
 else return 1 + length(head->next);
}
...

4

Exercise 16

Implement add_after.

list.h
...
add_after(Node *n , char c);
...

list.c
...
int add_after(Node *n , char c)
{
 Node *_n = create_node(c);
 if(!_n) return 1;
 _n->next = n->next;
 n->next = _n;
 return 0;
}
...

5

Exercise 16

Implement reverse_print
recursively.

Base Case:

• If the list has one elements,
print its contents.

Recursion:

• Reverse print the sub-list linked off of the next pointer.

• Then print node’s contents

list.h
...
void reverse_print(const Node *node);
...

list.c
...
void reverse_print(const Node *node)
{
 if(!node->next) printf("%c " , node->data);
 else
 {
 reverse_print(node->next);
 printf("%c " , node->data);
 }
}
...

6

Exercise 16

Implement reverse_print
recursively.

Base Case:

• If the list has one elements,
print its contents.

Recursion:

• Reverse print the sub-list linked off of the next pointer.

• Then print node’s contents

list.h
...
void reverse_print(const Node *node);
...

list.c
...
void reverse_print(const Node *node)
{
 if(node->next) reverse_print(node->next);
 printf("%c " , node->data);
}
...

7

Outline

• Exercise 16

• Midterm project

8

Image Representation:

An image has a prescribed number of
rows (height) and columns (width), as
well as a list of pixel values.

Midterm project

ppm_io.h

...
typedef struct {
 unsigned char r;
 unsigned char g;
 unsigned char b;
} Pixel;

typedef struct {
Pixel *data;
int rows;
int cols;

} Image;
...

9

Image Representation:

An image has a prescribed number of
rows (height) and columns (width), as
well as a list of pixel values.

A pixel is described by its red, green,
and blue values.

Midterm project

ppm_io.h

...
typedef struct {

unsigned char r;
unsigned char g;
unsigned char b;

} Pixel;

typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...

10

Image Storage:

Images are read from / written to disk
using the.ppm file format.
(See the midterm webpage for details.)

You will need to implement functionality for:

Midterm project

ppm_io.h

...
typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...
Image make_image(int rows , int cols);
void free_image(Image * im);
int write_ppm(FILE * fp , const Image img);
Image read_ppm(FILE * fp);
...

11

Image Storage:

Images are read from / written to disk
using the.ppm file format.
(See the midterm webpage for details.)

You will need to implement functionality for:
• Creating an Image of the prescribed width/height (and allocating the pixels)

Midterm project

ppm_io.h

...
typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...
Image make_image(int rows , int cols);
void free_image(Image * im);
int write_ppm(FILE * fp , const Image img);
Image read_ppm(FILE * fp);
...

12

Image Storage:

Images are read from / written to disk
using the.ppm file format.
(See the midterm webpage for details.)

You will need to implement functionality for:
• Creating an Image of the prescribed width/height (and allocating the pixels)

• Deallocating the pixels of an Image (and setting the data member to NULL)

Midterm project

ppm_io.h

...
typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...
Image make_image(int rows , int cols);
void free_image(Image * im);
int write_ppm(FILE * fp , const Image img);
Image read_ppm(FILE * fp);
...

13

Image Storage:

Images are read from / written to disk
using the.ppm file format.
(See the midterm webpage for details.)

You will need to implement functionality for:
• Creating an Image of the prescribed width/height (and allocating the pixels)

• Deallocating the pixels of an Image (and setting the data member to NULL)

• Writing an Image to a (binary) file handle

Midterm project

ppm_io.h

...
typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...
Image make_image(int rows , int cols);
void free_image(Image * im);
int write_ppm(FILE * fp , const Image img);
Image read_ppm(FILE * fp);
...

14

Image Storage:

Images are read from / written to disk
using the.ppm file format.
(See the midterm webpage for details.)

You will need to implement functionality for:
• Creating an Image of the prescribed width/height (and allocating the pixels)

• Deallocating the pixels of an Image (and setting the data member to NULL)

• Writing an Image to a (binary) file handle

Note:

Functionality for reading an Image is provided, but it requires
make_image being (correctly) implemented.

Midterm project

ppm_io.h

...
typedef struct {
 Pixel *data;
 int rows;
 int cols;
} Image;
...
Image make_image(int rows , int cols);
void free_image(Image * im);
int write_ppm(FILE * fp , const Image img);
Image read_ppm(FILE * fp);
...

15

Grayscale:

Given an input image, return an image whose pixels are the grayscale
values of the input pixels.

• An output pixel is gray, if its red, green, and blue values are equal

• Given red (𝑟), green (𝑔), and blue (𝑏) input pixel values, the corresponding
gray value is given by:

Gray 𝑟, 𝑔, 𝑏 = 0.3𝑟 + 0.59𝑔 + 0.11𝑏

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1, const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

16

Grayscale:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

17

Blend (0 ≤ 𝛼 ≤ 1):

Given a source and target image, return an image:
• Whose width/height is the maximum of the widths/heights of the inputs

• Whose pixel values are the 𝛼-blend of the pixel values of the input.
For example:
• If the red channels of the inputs are 𝑟1 and 𝑟2, the red channel of the output will be:

𝛼 ⋅ 𝑟1 + 1 − 𝛼 ⋅ 𝑟2
• If only one of the pixels is defined, use that pixel’s value.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

18

Blend (0 ≤ 𝛼 ≤ 1):

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5

𝛼 = 0.75 𝛼 = 1

19

Rotate-CCW:

Rotate the image counter-clockwise by 90∘.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

20

Pointilism:

Return the result of applying a pointillist filter to the input.

For a random subset of the pixels in the image:
• Draw a filled-in circle at the pixel, with the pixel’s color

• The radius of the circle should itself be a random value between 1 and 5.

[WARNING]
• Because you will be using random values, your results may not be identical to

those you see on the webpage.

• For reproducibility, pointilism takes a seed for random number generation.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

21

Pointilism:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

22

Blur (𝜎 > 0):

Return the result of smoothing the input.
• For each output pixel, compute the weighted average of the nearby pixels in

the input.
• The value of the weight should only depend on the distance of the nearby pixels.

• The weight should be non-negative

• The weight should fall off with distance

• The sum of the weight should be one.

⇒ You will set the weights using a Gaussian stencil with the size of the stencil (and
standard deviation of the Gaussian) a command-line parameter.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

23

Blurring Stencil:

Given a standard deviation 𝜎 you will define a 2𝑟𝜎 + 1 × 2𝑟𝜎 + 1
grid of filtering values, 𝐹, where:

• The radius is roughly five times the standard deviation:
𝑟𝜎 ≈ 5𝜎

• The value in the (𝑖, 𝑗)-th entry of the grid is given by the normal distribution:*

𝐹 𝑖 𝑗 ∼ exp −
𝑖 − 𝑟𝜎

2 + 𝑗 − 𝑟𝜎
2

2𝜎2

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

*Recall that the center is at (𝑖 = 𝑟𝜎, 𝑗 = 𝑟𝜎) which is where the filter is largest. 24

Blurring Stencil:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

Original



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

𝐹 =

Pixel(x,y): red = 36

 green = 36

 blue = 0

25

Blurring Stencil:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

Original



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

Pixel(x,y): red = 36

 green = 36

 blue = 0

Pixel(x,y).red and its red neighbors

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

𝐹 =

26

Blurring Stencil:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

Original



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red =

(36 * 1/16) + (109 * 2/16) + (146 * 1/16)

(32 * 2/16) + (36 * 4/16) + (109 * 2/16)

(32 * 1/16) + (36 * 2/16) + (73 * 1/16)

Pixel(x,y).red and its red neighbors

𝐹 =

27

Blurring Stencil:

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

Original



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 62.69

Pixel(x,y).red and its red neighbors

𝐹 =

28

Blur (𝜎 > 0):

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

𝜎 = 1 𝜎 = 5

29

Saturate (𝑠 ≥ 0):

Return the result of increasing/decreasing the saturation of the pixels
in the input by a factor of 𝑠.

Definition:

The saturation is the extent to which the color deviates from its
grayscale value.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

30

Saturate (𝑠 ≥ 0):

Return the result of increasing/decreasing the saturation of the pixels
in the input by a factor of 𝑠.

For each pixel:
• Compute its grayscale value

• Compute the difference between the pixel’s value and the grayscale value.

• Scale the difference by 𝑠 and add that back to the grayscale.

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

31

Saturate (𝑠 ≥ 0):

Midterm project

image_manip.h

...
Image grayscale(const Image in);
Image blend(const Image in1 , const Image in2 , double alpha);
Image rotate_ccw(const Image in);
Image pointilism(const Image in , unsigned int seed);
Image blur(const Image in , double sigma);
Image saturate(const Image in , double scale);
...

𝑠 = 0

𝑠 = 1

𝑠 = 2
32

Things to keep in mind:
• The pixels of an image are standardly stored in row-major format:

• All the pixels of the first row are stored before the pixels of the second, which are stored
before the pixels of the third, etc.

• Within a row, pixels are ordered by column.

• The (0,0) pixel is at the top left of the image.

• All procesing returns a new Image. (Input should not be modified.)

• The red, green, and blue values are stored as unsigned chars but many of
the applications require doing calculations with floating point precision:
• Be aware of implicit casting

• Be careful when floating point values are outside the range that can be represented by
an unsigned char.

• When applying a (smoothing) filter, make sure that you don’t try accessing
neighboring pixels that are not in the image

Midterm project

33

Things to keep in mind:
• The pixels of an image are standardly stored in row-major format:

• All the pixels of the first row are stored before the pixels of the second, which are stored
before the pixels of the third, etc.

• Within a row, pixels are ordered by column.

• The (0,0) pixel is at the top left of the image.

• All procesing returns a new Image. (Input should not be modified.)

• The red, green, and blue values are stored as unsigned chars but many of
the applications require doing calculations with floating point precision:
• Be aware of implicit casting

• Be careful when floating point values are outside the range that can be represented by
an unsigned char.

• When applying a (smoothing) filter, make sure that you don’t try accessing
neighboring pixels that are not in the image

Midterm project

valgrind is your friend! 34

	Slide 1: Intermediate Programming Day 16
	Slide 2: Outline
	Slide 3: Exercise 16
	Slide 4: Exercise 16
	Slide 5: Exercise 16
	Slide 6: Exercise 16
	Slide 7: Exercise 16
	Slide 8: Outline
	Slide 9: Midterm project
	Slide 10: Midterm project
	Slide 11: Midterm project
	Slide 12: Midterm project
	Slide 13: Midterm project
	Slide 14: Midterm project
	Slide 15: Midterm project
	Slide 16: Midterm project
	Slide 17: Midterm project
	Slide 18: Midterm project
	Slide 19: Midterm project
	Slide 20: Midterm project
	Slide 21: Midterm project
	Slide 22: Midterm project
	Slide 23: Midterm project
	Slide 24: Midterm project
	Slide 25: Midterm project
	Slide 26: Midterm project
	Slide 27: Midterm project
	Slide 28: Midterm project
	Slide 29: Midterm project
	Slide 30: Midterm project
	Slide 31: Midterm project
	Slide 32: Midterm project
	Slide 33: Midterm project
	Slide 34: Midterm project

