Intermediate Programming Day 15

Outline

- Exercise 14
- Numerical representation
- Casting
- Random Numbers
- Review questions

Exercise 14

Convert char * message to int number

```
int str_to_int(char msg[], int len )
    int num = 0;
    if( len>32 )
    {
        fprintf(stderr, "[WARNING] Insufficient bits\n" );
        len = 32;
    }
    for( int i=0 ; i<len ; i++ ) if( msg[len-i-1]=='1' ) num += pow( 2, i );
    return num;
}
```


Recall:

Conversion from binary is done by summing the powers of two that are marked with a " 1 " bit.

$$
\left(\cdots s_{3} s_{2} s_{1} s_{0}\right)_{2} \leftrightarrow \cdots \boldsymbol{s}_{\mathbf{3}} \times 2^{3}+\boldsymbol{s}_{\mathbf{2}} \times 2^{2}+\boldsymbol{s}_{\mathbf{1}} \times 2^{1}+\boldsymbol{s}_{\mathbf{0}} \times 2^{0}
$$

Exercise 14

Convert char * message to int number

- Note that $2^{i}=1 \ll i$
int str_to_int(char msg[], int len)
int num $=0$;
if(len>32)
\{
fprintf(stderr, "[WARNING] Insufficient bits $\backslash n "$);
len = 32;
\}
for (int $i=0$; iklen ; i++) if(msg[len-i-1]=='1') num += $1 \ll i$;
return num;
\}

Exercise 14

Convert char * message to int number

- Note that $2^{i}=1 \ll i$
- Note that if i and j are

```
int str_to_int(char msg[], int len )
```

int str_to_int(char msg[], int len)
int num $=0$; if(len>32)
\{
fprintf(stderr, "[WARNING] Insufficient bits $\backslash n "$); len $=32$;
\}
for (int $i=0$; iklen ; i++) if(msg[len-i-1]=='1') num |= $1 \ll i$; return num;
encrypt.c

```
variables with no common
bits turned on (i\& \(j==0\) ) then
\(i+j=i \mid j\)

\section*{Exercise 14}

\section*{Convert int number to char * message}
```

void int_to_str(int num_encrypted, char msg_encrypted[], int len)

```
```

for(int i=0 ; i<len ; i++)

```
    \{
        if( num_encrypted\&1 ) msg_encrypted[len-i-1] = ' 1 ';
        else msg_encrypted[len-i-1] = '0';
        num_encrypted \(\gg=1\);
    \}
    if( num_encrypted )
        fprintf(stderr, "[WARNING] Insufficient bits \(\backslash n "\) );
\}

\section*{Exercise 14}

Compute the encrypted message by repeatedly left-shifting the message by 1 and XORing.
```

int main(void)

```
    int num_msg = 0;
    char msg[33] = \{'\0'\};
    int \(n=-1\);
    int num_encrypted \(=0\);
    for ( int \(i=0 ; i<n ; i++\) ) num_encrypted \({ }^{\wedge}=\) num_msg<<i;
    return 0;
\}

\section*{Outline}
- Exercise 14
- Numerical representation
- Casting
- Random Numbers
- Review questions

\section*{Arithmetic}
- The integers are a set (of numbers)
- There is an addition operator, + , that takes a pair of integers and returns an integer
- There is a zero element, 0 , with the property that adding zero to any integer gives back that integer:
\[
a+0=a
\]
- Every integer \(a\) has an inverse \(-a\) such that the sum of the two is zero:
\[
a+(-a)=a-a=0
\]

\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- Degrees in a circle \(\left(\bmod 360^{\circ}\right)\)
- Hours on a clock (mod 12 )


\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can represent integers mod \(M\) using values in the range \([0, M\) )
- While an integer is bigger than or equal to \(M\), repeatedly subtract \(M\)
- While an integer is less than zero, repeatedly add \(M\)

\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can represent integers mod \(M\) using values in the range \([0, M\) )
- Or, we can represent integers mod \(M\) using the range \(\left[-\frac{M}{2}, \frac{M}{2}\right]\)
- While an integer is bigger than or equal to \(\frac{M}{2}\), repeatedly subtract \(M\)
- While an integer is less than \(-\frac{M}{2}\), repeatedly add \(M\)

\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\) :
\[
225^{\circ}+180^{\circ}=405^{\circ}
\]


\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\) :
\[
225^{\circ}+180^{\circ}=405^{\circ} \equiv 45^{\circ}
\]

\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\) :
\[
225^{\circ}-180^{\circ} \equiv 225^{\circ}+180^{\circ}=405^{\circ} \equiv 45^{\circ}
\]

\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\)
- For any integer \(a\), the negative of \(a\) modulo \(M\) can be represented by \(M-a\)


\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\)
- For any integer \(a\), the negative of \(a\) modulo \(M\) can be represented by \(M-a\) :
\[
a+(M-a)=(a-a)+M
\]


\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\)
- For any integer \(a\), the negative of \(a\) modulo \(M\) can be represented by \(M-a\) :
\[
a+(M-a)=(a-a)+M=M
\]


\section*{Modular arithmetic}
- Given a positive integer, \(M\), we say that two integers \(a\) and \(b\) are equivalent modulo \(M\), if there is exists some integer \(k\) such that:
\[
a \equiv b+k \cdot M
\]
- We can add numbers modulo \(M\)
- For any integer \(a\), the negative of \(a\) modulo \(M\) can be represented by \(M-a\) :
\[
a+(M-a)=(a-a)+M=M \equiv 0
\]


\section*{Bases (decimal)}
- When we write out an integer in decimal notation, we represent it as a sum of "one"s, "ten"s, "hundred"s, etc.
\[
\begin{aligned}
365 & =\mathbf{3} \times 100+\mathbf{6} \times 10+\mathbf{5} \times 1 \\
& =\mathbf{3} \times 10^{2}+\mathbf{6} \times 10^{1}+\mathbf{5} \times 10^{0}
\end{aligned}
\]
- This is unique because each digit is in the range 0 to 9 , written \([0,10\) )

\section*{Bases (decimal)}
- We add two numbers by adding the digits from smallest to largest
- If the sum of digits falls outside the range \([0,10)\) we carry
\begin{tabular}{r}
365 \\
\(+\quad 673\) \\
\hline
\end{tabular}

\section*{Bases (decimal)}
- We add two numbers by adding the digits from smallest to largest
- If the sum of digits falls outside the range \([0,10)\) we carry


\section*{Bases (decimal)}
- We add two numbers by adding the digits from smallest to largest
- If the sum of digits falls outside the range \([0,10)\) we carry


\section*{Bases (decimal)}
- We add two numbers by adding the digits from smallest to largest
- If the sum of digits falls outside the range \([0,10)\) we carry
\[
\begin{array}{r}
11 \\
\\
36 \\
+\quad 673 \\
\hline 0338
\end{array}
\]

\section*{Bases (decimal)}
- We add two numbers by adding the digits from smallest to largest
- If the sum of digits falls outside the range \([0,10)\) we carry
\[
\begin{array}{r}
11 \\
\\
36 \\
+\quad 6 \\
\hline 1
\end{array} 03389
\]

\section*{Bases (decimal)}

Q: If we use three digits, how many numbers can we represent?
A: \(1000=10^{3}\) (including zero)

\section*{Note:}
- The sum of two numbers represented using three digits may require four digits to store:
\[
\begin{array}{r}
365 \\
+\quad 673 \\
\hline 10338
\end{array}
\]

\section*{Bases (decimal)}

Q: If we use three digits, how many numbers can we represent?
A: \(1000=10^{3}\) (including zero)

\section*{Note:}
- The sum of two numbers represented using three digits may require four digits to store:
\[
\begin{array}{r}
365 \\
+\quad 673 \\
\hline 038
\end{array}
\]
- If we only use three digits, we lose the leading digit to overflow
- This is the same as the number mod \(10^{3}\)

\section*{Bases (binary)}
- We can also write out numbers in base two
\[
\begin{aligned}
\left(s_{3} s_{2} s_{1} s_{0}\right)_{2} & =\boldsymbol{s}_{\mathbf{3}} \times 8+\boldsymbol{s}_{\mathbf{2}} \times 4+\boldsymbol{s}_{\mathbf{1}} \times 2+\boldsymbol{s}_{\mathbf{0}} \times 1 \\
& =\boldsymbol{s}_{\mathbf{3}} \times 2^{3}+\boldsymbol{s}_{\mathbf{2}} \times 2^{2}+\boldsymbol{s}_{\mathbf{1}} \times 2^{1}+\boldsymbol{s}_{\mathbf{0}} \times 2^{0}
\end{aligned}
\]
where \(\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\) are one of 0 or 1 .

\section*{Bases (binary)}
- As before, we add two numbers by adding the digits from smallest to largest, carrying if the sum is larger than 1 :

\section*{Bases (binary)}
- As before, we add two numbers by adding the digits from smallest to largest, carrying if the sum is larger than 1 :
\[
\begin{array}{r}
(1110)_{2} \\
+\quad(0 \quad 1 \\
\hline\left(\begin{array}{lll}
1)_{2} \\
\hline
\end{array}\right. \\
\hline
\end{array}
\]

\section*{Bases (binary)}
- As before, we add two numbers by adding the digits from smallest to largest, carrying if the sum is larger than 1:
1

\((1\)
\(+\quad 110)_{2}\)
\(+\quad(0\) 1 \begin{tabular}{l}
\(1)_{2}\) \\
\hline
\end{tabular}

\section*{Bases (binary)}
- As before, we add two numbers by adding the digits from smallest to largest, carrying if the sum is larger than 1 :
\[
\begin{aligned}
& 1 \quad 1 \\
& \left.\begin{array}{lll}
1 & 1 & 0
\end{array}\right)_{2} \\
& \begin{array}{r}
(0 \quad 1 \quad 1)_{2} \\
+\quad(0 \quad 0 \quad 1)_{2}
\end{array}
\end{aligned}
\]

\section*{Bases (binary)}
- As before, we add two numbers by adding the digits from smallest to largest, carrying if the sum is larger than 1 :
\[
\begin{aligned}
& 1 \quad 1 \\
& \left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)_{2} \\
& \begin{array}{cccc}
+ & (0 & 1 & 1)_{2} \\
\hline(1 & 0 & 0 & 1)_{2}
\end{array}
\end{aligned}
\]

\section*{Bases (binary)}

Q: Using three digits in base two, how many numbers can we represent?
A: 8 (including zero)

\section*{Note:}
- As before, the sum of two numbers represented using three digits may require four digits to store:
\[
\begin{array}{rrrr}
1 & 1 & & \\
& (1 & 1 & 0)_{2} \\
+ & (0 & 1 & 1)_{2} \\
\hline(1 & 0 & 0 & 1)_{2}
\end{array}
\]

\section*{Bases (binary)}

Q: Using three digits in base two, how many numbers can we represent?
A: 8 (including zero)

\section*{Note:}
- As before, the sum of two numbers represented using three digits may require four digits to store:
\[
\begin{array}{r}
(1010)_{2} \\
+\quad(0101)_{2} \\
\hline(0001)_{2}
\end{array}
\]
- If we only use three digits, we lose the leading digit to overflow
- This is the same as the number mod 8 .

\section*{Bases (decimal)}
- Given a number in base 10 :
\[
16,384=1 \times 10^{4}+6 \times 10^{3}+\mathbf{3} \times 10^{2}+8 \times 10^{1}+\mathbf{4} \times 10^{0}
\]
we can express the number in base \(10^{2}=100\) by grouping digits:
\[
16,384=\mathbf{1} \times 100^{2}+\mathbf{6 3} \times 100^{1}+\mathbf{8 4} \times 100^{0}
\]

Similarly, we can express the number in base \(10^{3}=1000\), etc.

\section*{Bases (two)}
- Similarly, given a number in base two:
\[
\left(s_{3} s_{2} s_{1} s_{0}\right)_{2}=\boldsymbol{s}_{\mathbf{3}} \times 8+\boldsymbol{s}_{\mathbf{2}} \times 4+\boldsymbol{s}_{\mathbf{1}} \times 2+\boldsymbol{s}_{\mathbf{0}} \times 1
\]
we can express the number in base \(2^{2}=4\) by grouping digits:
\[
\left(s_{3} s_{2} s_{1} s_{0}\right)_{2}=\left(\boldsymbol{s}_{\mathbf{3}} \times \mathbf{2}+\boldsymbol{s}_{\mathbf{2}}\right) \times 4+\left(\boldsymbol{s}_{\mathbf{1}} \times \mathbf{2}+\boldsymbol{s}_{\mathbf{0}}\right) \times 1
\]

Similarly, we can express the number in base \(2^{3}=8\), etc.

\section*{Bases (examples)}

What is the expression in base 10 ?
- \((1101)_{2}=\)

\section*{Bases (examples)}

What is the expression in base 10 ?
- \((1101)_{2}=\mathbf{1} \times 8+\mathbf{1} \times 4+\mathbf{0} \times 2+\mathbf{1} \times 1\)
\(=8+4+1\)
\(=13\)

\section*{Bases (examples)}

What is the expression in base 2 ?
- \(27=\)

\section*{Bases (examples)}

What is the expression in base 2 ?
- \(27=16+8+2+1\)
\(=\mathbf{1} \times 16+\mathbf{1} \times 8+\mathbf{0} \times 4+\mathbf{1} \times 2+\mathbf{1} \times 1\)
\(=(11011)_{2}\)

\section*{Bases (examples)}

What is the expression in base 2 ?
- \(27=16+8+2+1\)
\[
=\mathbf{1} \times 16+\mathbf{1} \times 8+\mathbf{0} \times 4+\mathbf{1} \times 2+\mathbf{1} \times 1
\]
\[
=(11011)_{2}
\]

What is the expression in base 4?
- \(27=\)

\section*{Bases (examples)}

What is the expression in base 2 ?
- \(27=16+8+2+1\)
\(=\mathbf{1} \times 16+\mathbf{1} \times 8+\mathbf{0} \times 4+\mathbf{1} \times 2+\mathbf{1} \times 1\)
\(=\left(110(11)_{2}\right.\)
What is the expression in base 4?
- \(27=16+8+3\)
\(=\mathbf{1} \times 16+2 \times 4+3 \times 1\)
\(=(123)_{4}\)

\section*{Bases (in the wild)}
- Decimal (base 10)
- We have ten fingers
- Sexagesimal (base 60):
- Minutes / seconds
- Easy to tell if a number is divisible by \(2,3,4,5,6,10,12,15\), or 30
- Dates back to the Babylonians

\section*{Bases (in the wild)}
- Binary (base 2)
- Numbers in a computer
- Hexadecimal a.k.a. hex (base 16)
- Numbers in a computer ( \(16=2^{4}\) )
- We can easily convert binary to hex by grouping sets of four digits
- We get a more compact representation, replacing 4 digits with 1

\section*{Bases (in the wild)}
- Binary (base 2)
- Numbers in a computer
- Hexadecimal a.k.a. hex (base 16)

Q: How should we separate the digits? \((115)_{16}\)
- \((115)_{16}=\mathbf{1} \times 16^{2}+\mathbf{1} \times 16^{1}+\mathbf{5} \times 16^{0}\)
- \((115)_{16}=\mathbf{1} \times 16^{1}+\mathbf{1 5} \times 16^{0}\)
- \((115)_{16}=\mathbf{1 1} \times 16^{1}+\mathbf{5} \times 16^{0}\)

\section*{Bases (in the wild)}
- Binary (base 2)
- Numbers in a computer
- Hexadecimal a.k.a. hex (base 16)

Q: How should we separate the digits? (115) \({ }_{16}\)
A: Use numbers and letters:
- \(\{0,1,2,3,4,5,6,7,8,9\}\) to represent numbers in the range \([0,10)\)
- \(\{a, b, c, d, e, f\}\) to represent values in the range \([10,16)\) :
- \((115)_{16}=\mathbf{1} \times 16^{2}+\mathbf{1} \times 16^{1}+\mathbf{5} \times 16^{0}\)
- \((1 f)_{16}=\)
\(1 \times 16^{1}+\mathbf{1 5} \times 16^{0}\)
- \((b 5)_{16}=\)
\(\mathbf{1 1} \times 16^{1}+5 \times 16^{0}\)

\section*{Representing integers}
- On most machines, [unsigned] ints are represented using 4 bytes*
- Each byte is composed of 8 bits
\(\Rightarrow\) An [unsigned] int is represented by 32 bits
- Each bit can be either "on" or "off"
\(\Rightarrow\) An [unsigned] int is represented in binary using 32 digits with values 0 or 1
\(\Rightarrow \mathrm{An}\) [unsigned] int can have one of \(2^{32}\) values

\section*{Representing integers}
- On most machines, [unsigned] ints are represented using 4 bytes
- Each byte is composed of 8 bits
\(\Rightarrow\) An [unsigned] int is represented by 32 bits
- Each bit can be either "on" or "off"
\(\Rightarrow\) An [unsigned] int is represented in binary using 32 digits with values 0 or 1
\(\Rightarrow\) An [unsigned] int can have one of \(2^{32}\) values
On the machine, \(a\) is assigned the value:
```

\#include <stdio.h>
int main(void)
{
int a = 30;
printf("%d\n", a);
return 0;

```

\(a \leftarrow(00000000000000000000000000011110)_{2}\)
\(a \leftarrow(0000001 e)_{16}\)

\section*{Representing integers}
- On most machines, [unsigned] ints are represented using 4 bytes
- Each byte is composed of 8 bits
\(\Rightarrow\) An [unsigned] int is represented by 32 bits
- Each bit can be either "on" or "off"
\(\Rightarrow\) An [unsigned] int is represented in binary using 32 digits with values 0 or 1
\(\Rightarrow\) An [unsigned] int can have one of \(2^{32}\) values
On the machine, \(a\) is assigned the value:
```

\#include <stdio.h>
int main(void)
{
int a = 0x1e;
printf("%d\n",a);
return 0;
}

```
\(a \leftarrow(00000000000000000000000000011110)_{2}\)
\(a \leftarrow(0000001 e)_{16}\)
- You can assign using base 16 by preceding the number with \(0 x\) to indicate hex

\section*{Representing integers}
- On most machines, [unsigned] ints are represented using 4 bytes
- Each byte is composed of 8 bits
\(\Rightarrow\) An [unsigned] int is represented by 32 bits
- Each bit can be either "on" or "off"
\(\Rightarrow\) An [unsigned] int is represented in binary
\[
\text { int } a=30 ;
\] using 32 digits with values 0 or 1
printf( "\%x\n" , a );
\(\Rightarrow\) An [unsigned] int can have one of \(2^{32}\) values
return 0;

On the machine, \(a\) is assigned the value:
\[
a \leftarrow(00000000000000000000000000011110)_{2}
\]
\[
a \leftarrow(0000001 e)_{16}
\]
- You can assign using base 16 by preceding the number with \(0 x\) to indicate hex
- You can print the base 16 representation by using \%x for formatting

\section*{Representing integers}
- On most machines, [unsigned] chars are represented using 1 byte \(\Rightarrow\) A [unsigned] char can have one of \(2^{8}\) values
- On most machines, [unsigned] long ints are represented using 8 bytes
- A [unsigned] long int can have one of \(2^{64}\) values

\section*{Representing integers*}
\(\Rightarrow\) An [unsigned] char can have one of \(2^{8}=256\) values
\(\Rightarrow\) [unsigned] chars are integer values mod \(2^{8}\)
- unsigned char: We will use the range \([0,256)^{* *}\) to represent integers
- char: We will use the range \([-128,128)\) to represent integers

Q: What's the difference?
Integers mod \(2^{8}\) are integers \(\bmod 2^{8}\), regardless of the representation!!!
*The following discussion will focus on chars, though it holds for other integer representations (e.g. ints and long ints)
** The notation \([a, b)\) indicates the half open interval, including \(a\) but not \(b 3\)

\section*{Representing integers}
- unsigned char: We will use the range \([0,256)\) to represent integers
- char: We will use the range \([-128,128)\) to represent integers

Q: What's the difference?

A: Is \(125<129 \bmod 256\) ?
Since \(129 \equiv-127 \bmod 256\), it depends on the range we use


\section*{Representing integers}
- unsigned char: We will use the range \([0,256)\) to represent integers
- char: We will use the range \([-128,128)\) to represent integers

Q: What's the difference?

A: Is \(125<129 \bmod 256\) ?
Since \(129 \equiv-127 \bmod 256\), it depends on the range we use
```

\#include <stdio.h>
int main(void)
{
char c1 = 125, c2 = 129;
printf("%d\n" , c1<c2);
return 0;
}

```

\section*{Representing integers}
- Addition:

We add two numbers, \(a+b\), by adding the digits from smallest to largest
- We carry as necessary
- And we cut off at 8 bits
\[
\begin{array}{r}
1111 \\
(11010011)_{2} \\
+(01000110)_{2} \\
\hline(100011001)_{2} \\
=(00011001)_{2}
\end{array}
\]

\section*{Representing integers}
- Addition:

We add two numbers, \(a+b\). by adding the digits from smallest to largest
- We carry as necessary
- And we cut off at 8 bits
\[
\begin{array}{r}
11 \quad 11 \\
(11010011)_{2} \\
+(01000110)_{2} \\
\hline(00011001)_{2}
\end{array}
\]

Q: What about subtraction, \(a-b\) ?

\section*{Representing integers}
- Addition:

We add two numbers, \(a+b\). by adding the digits from smallest to largest
- We carry as necessary
- And we cut off at 8 bits
\[
\begin{array}{r}
11 \quad 11 \\
(11010011)_{2} \\
+(01000110)_{2} \\
\hline(00011001)_{2}
\end{array}
\]

Q: What about subtraction, \(a-b=a+(-b)\) ?
Equivalently, how do we define the negative of a number?

\section*{Negation}

\section*{- Recall:}

The negative of an integer is the number we would have to add to get back zero.
- Defining negative one:
- Mod 256, we have \(-1 \equiv 255=(11111111)_{2}\)

\section*{Negation}

\section*{- Recall:}

The negative of an integer is the number we would have to add to get back zero.
- Defining negatives in general:
1. Given a binary value in 8 bits:
\((10011101)_{2}\)
2. We can flip the bits:
\((01100010)_{2}\)
3. Adding the two values we get \(255 \equiv-1\) :
\((11111111)_{2}\)
4. Adding one to that we get 0

\section*{Negation}

\section*{- Recall:}

The negative of an integer is the number we would have to add to get back zero.
- 2's complement:

To get the binary representation of the negative of a number
1. Flip the bits
2. Add 1

\section*{Floating point value representation}
\[
\pm s \times 2^{e}
\]
- On most machines, floats are represented using 4 bytes ( 32 bits)
- These are (roughly) used to encode:
- The sign ( \(\pm\) ): 1 bit
- The signed (integer) exponent (e): 8 bits* \(^{*}\)
- The unsigned (integer) significand/mantissa/coefficient (s): 23 bits

\section*{Floating point value representation}
\[
\pm s \times 2^{e}
\]
- On most machines, doubles are represented using 8 bytes ( 64 bits)
- These are (roughly) used to encode:
- The sign ( \(\pm\) ): 1 bit
- The signed (integer) exponent (e): 11 bits
- The unsigned (integer) significand/mantissa/coefficient ( \(s\) ): 52 bits

\section*{Outline}
- Exercise 14
- Numerical representation
- Casting
- Random Numbers
- Review questions

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
<type-1> Ihs;
<type-2> rhs;
lhs = rhs;

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
- If both are integers and sizeof( LHS )>=sizeof(RHS )
\(\Rightarrow\) the conversion happens without loss of information
```

\#include <stdio.h>
int main(void)
{
char c = 'a';
int i = c;
printf("%d -> %d\n", c,i);
return 0;
}

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

- If both are integers and sizeof(LHS) ssizeof(RHS)
\Rightarrow an implicit "modulo" operation is performed (modulo 2^{b} where b is the number of bits in the LHS)

```
#include <stdio.h>
int main( void)
{
    int i = 511;
    char c = i;
        printf( "%d -> %d\n" , i , c );
        return 0;
}

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
- If both are floats and sizeof( LHS )>=sizeof(RHS )
\(\Rightarrow\) the conversion happens without loss of information
```

\#include <stdio.h>
int main(void)
{
float f=1.5;
double d = f;
printf("%.8f -> %.8f\n" , f , d);
return 0;
}

```
```

>> ./a.out

```
>> ./a.out
1.50000000 -> 1.50000000
```

1.50000000 -> 1.50000000

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
- If both are floats and sizeof( LHS ) <sizeof(RHS )
\(\Rightarrow\) rounding is performed
```

\#include <stdio.h>
int main(void)
{
double d = 1.7;
float f = d;
printf("%.8f -> %.8f\n" , d , f);
return 0;
}

```
```

>> ./a.out

```
>> ./a.out
1.70000000 -> 1.70000005
```

1.70000000 -> 1.70000005

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
- If the LHS is an integer and the RHS is a floating point value \(\Rightarrow\) the fractional part is discarded
```

\#include <stdio.h>
int main(void)
{
double d = -3.6;
int i = d;
printf("%.8f -> %d\n", d,i);
return 0;
}
>> ./a.out
-3.60000000 -> -3

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
- If the LHS is a floating point value and the RHS is an integer \(\Rightarrow\) the closest floating point representation is used
```

\#include <stdio.h>
int main(void)
{
int i = 123456789;
float f=i;
printf("%d -> %.Of\n" , i , f);
return 0;
}
>> ./a.out
123456789 -> 123456792

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS) The same rules apply when passing values to/from a function
```

\#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
double d = 511.5;
float f= foo(d);
printf("%g -> %g\n", d,f);
return 0;
}

```
```

>> ./a.out

```
>> ./a.out
511.5 -> -1
```

511.5 -> -1

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
The same rules apply when passing values to/from a function
- double \(\rightarrow\) unsigned char: \(511.5 \rightarrow 511 \rightarrow 255\)
```

\#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
double d = 511.5;
float f = foo(d);
printf("%g -> %g\n", d,f);
return 0;
}

```
```

>> ./a.out

```
>> ./a.out
511.5 -> -1
```

511.5 -> -1

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
The same rules apply when passing values to/from a function
- double \(\rightarrow\) unsigned char: \(511.5 \rightarrow 511 \rightarrow 255\)
- unsigned char \(\rightarrow\) char: \(255 \rightarrow-1\)
```

\#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
double d = 511.5;
float f= foo(d);
printf("%g -> %g\n", d,f);
return 0;
}

```
```

>> ./a.out

```
>> ./a.out
511.5 -> -1
```

511.5 -> -1

```

\section*{Casting between types (numbers)}

When you assign a value to a variable, the right-hand-side (RHS) is implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)
The same rules apply when passing values to/from a function
- double \(\rightarrow\) unsigned char: \(511.5 \rightarrow 511 \rightarrow 255\)
- unsigned char \(\rightarrow\) char:
\(255 \rightarrow-1\)
- char \(\rightarrow\) float:
\(-1 \rightarrow-1 . f\)
```

\#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
double d = 511.5;
float f = foo(d);
printf("%g -> %g\n", d,f);
return 0;
}
>> ./a.out
511.5 -> -1

```

\section*{Casting between types (numbers)}

When casting, the types are ranked:
- Larger size integers/floats are "higher rank" char < int < long unsigned char < unsigned int < unsigned long float < double
- Unsigned integers are "higher rank" than signed integers*
char < unsigned char < int < unsigned int < long < unsigned long float < double
- Floating point values are "higher rank" than integers char < unsigned char < int < unsigned int < long < unsigned long < float < double

\section*{Casting between types (numbers)}

When casting, the types are ranked:
char < unsigned char < int < unsigned int < long < unsigned long < float < double

When we cast from lower rank to higher rank, we are promoting. When we cast from higher rank to lower rank, we are narrowing.

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted:
char < unsigned char < int < unsigned int < long < unsigned long < float < double
```

\#include <stdio.h>
int main(void)
{
int i = -1;
unsigned int ui = 1;
printf("d\n" ,i<ui);
return 0;
}

```
>> ./a.out

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted: char < unsigned char < int < unsigned int < long < unsigned long < float < double
\#include <stdio.h>
int main( void )
\{
int \(\mathrm{i}=2\);
double \(d=2.5\);
\(i=i^{*} d\);
printf( "\%d\n", i); return 0;

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted: char < unsigned char < int < unsigned int < long < unsigned long < float < double
\#include <stdio.h>
int main( void )
\{
int \(\mathrm{i}=2\);
double \(d=2.5\);
\(i^{\star}=d\);
printf( "\%d\n", i ); return 0;

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted: char < unsigned char < int < unsigned int < long < unsigned long < float < double
```

\#include <stdio.h>
int main(void)
{
int one = 1;
int four = 4;
int i = one / four * four:
printf("%d\n",i);
return 0:
}
>> ./a.out

```

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted: char < unsigned char < int < unsigned int < long < unsigned long < float < double
\#include <stdio.h> int main( void )
\{
double one \(=1\); int four = 4; int \(i=\) one / four * four: printf( "\%d\n", i); return 0;

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted:
char < unsigned char < int < unsigned int < long < unsigned long < float < double
```

\#include <stdio.h>
int main(void)
{
int one = 1, four = 4;
float f=one / four:
printf("%g\n",f);
return 0;
}

```

\section*{Casting between types (numbers)}

When performing a binary operation (arithmetic or comparison) with different types the "lower rank" operand is implicitly promoted:
char < unsigned char < int < unsigned int < long < unsigned long < float < double

The desired behavior can be forced with casting:
- Preceding the variable name with (<type-name>) converts the variable to type 〈type-name>
- Since casting takes precedence over arithmetic operations:
1. We convert one to a float
2. And then divide a float by an int
a. This implicitly promotes four to a float
\#include <stdio.h> int main( void)
\{
int one \(=1\), four \(=4\);
float \(f=\) (float)one \(/\) four; printf( "\%g\n", f ); return 0;
b. And then performs float by float division

\section*{Casting between types (pointers)}
- Since pointers represent locations in memory (independent of type)
- We can cast between pointer types (though this could be dangerous)
- This needs to be done explicitly
```

\#include <stdio.h>
int main(void)
{
int i = 1;
int *ip = \&i;
float *fp= (float*)ip;

```
\(\}\)

\section*{Casting between types (pointers)}
- Since pointers represent locations in memory (independent of type)
- We can cast between pointer types
- This needs to be done explicitly
- Unless one of them has type void*
```

void *malloc(size_t);
\#include <stdio.h>
int main(void)
{
float *a = malloc(10 * sizeof(float));
}

```

\section*{Casting between types (pointers)}
- Since pointers represent locations in memory (independent of type)
- We can cast between pointer types
- This needs to be done explicitly
- Unless one of them has type void*
- We can also explicitly cast between pointers and integers
- This needs to be done with care since a pointer can have different sizes on different machines:
- 4 bytes on a 32 -bit machine
- 8 bytes on a 64 -bit machine
- The size_t type is guaranteed to always have the size of a pointer
```

\#include <stdio.h>
int main(void)
{
int i = 100;
int *ip = \&i;
size_t addr = (size_t)ip;
printf("Address is: %zu\n", addr);
return 0;
}

```

\section*{Casting between types}

Three types of casting:
1. Nothing changes in the binary representation
- pointers \(\leftrightarrow\) pointers
- A memory address is a memory address
- The compiler needs to know the type to transform element offsets into byte offsets
- unsigned integers \(\leftrightarrow\) signed integers (of the same size)
- Different representations of numbers modulo \(M\) still represent the same number
- The compiler needs to know the type for comparisons

\section*{Casting between types}

\section*{Three types of casting:}
1. Nothing changes in the \(b\) \#include «stdio.h>
- pointers \(\leftrightarrow\) pointers
- A memory address is a memc
- The compiler needs to know
- unsigned integers \(\leftrightarrow\) signed
- Different representations of \(r\)
- The compiler needs to know
void PrintBinary(const void *mem, size_tsz)\{ ... \(\}\) int main( void )
\{
int iArray[] =\{1,2,3,4\};
int *iPtr = iArray;
    char *cPtr = (char *) iPtr;
    PrintBinary( iPtr , sizeof(iPtr) );
    PrintBinary( cPtr, sizeof(cPtr));
    return 0:
```

>> ./a.out
0 0 1 0 0 0 0 0 ~ 0 1 0 0 1 0 0 1 ~ 1 1 0 1 0 1 0 0 ~ 1 1 0 0 1 0 0 0 ~ 1 1 1 1 1 1 0 0 ~ 0 1 1 1 1 1 1 1 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~
0 0 1 0 0 0 0 0 ~ 0 1 0 0 1 0 0 1 ~ 1 1 0 1 0 1 0 0 ~ 1 1 0 0 1 0 0 0 ~ 1 1 1 1 1 1 0 0 ~ 0 1 1 1 1 1 1 1 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>>

```

\section*{Casting between types}

\section*{Three types of casting:}
1. Nothing changes in the \(b\) \#include «stdio.h>
- pointers \(\leftrightarrow\) pointers
- A memory address is a memc
- The compiler needs to know
- unsigned integers \(\leftrightarrow\) signed
- Different representations of \(r\)
- The compiler needs to know
void PrintBinary(const void *mem, size_tsz)\{ ... \(\}\) int main( void )
\{
unsigned int ui \(=(1 \ll 31) \mid 1\);
int \(\mathrm{i}=\mathrm{ui}\);
printf( " \%u = " , ui ) ; PrintBinary( \&ui , sizeof(ui) ); printf( "\%d = " , i ) : PrintBinary( \&i, sizeof(i) ); return 0;
\}

\section*{Casting between types}

Three types of casting:
1. Nothing changes in the binary representation
2. Binary representations are truncated/expanded
- integers \(\leftrightarrow\) integers (of different sizes)

\section*{Casting between types}

\section*{Three types of casting:}
1. Nothing changes in the bin \#include <stdio.h>
2. Binary representations are void PrintBinary (const void^ mem, size_tsz )\{...\}
- integers \(\leftrightarrow\) integers (of differe int main( void )
int i = 254;
unsigned char \(\mathrm{c}=\mathrm{i}\);
printf( "\%d = " , i ) : PrintBinary ( \&i , sizeof(i) );
printf( "\%d = " , c ) ; PrintBinary( \& c, sizeof(c) );
return 0;
\}
```

>> ./a.out
254 = 00000000 00000000 00000000 11111110
254 = 11111110

```
\(\gg\)

\section*{Casting between types}

Three types of casting:
1. Nothing changes in the binary representation
2. Binary representations are truncated/expanded
3. Binary representations are completely different
- integers \(\leftrightarrow\) floating point values
- floating point values \(\leftrightarrow\) floating point values (of different sizes)

\section*{Casting between types}

\section*{Three types of casting:}
1. Nothing changes in the bir \#include «stdio.h>
2. Binary representations are void PrintBinary(const void \({ }^{\star}\) mem , size_t sz ) \(\ldots\)... \}
3. Binary representations are \(\left\{_{\{ }^{\text {int main( void ) }}\right.\)
- integers \(\leftrightarrow\) floating point valu
int i = 1;
- floating point values \(\leftrightarrow\) floati
float \(f=i\);
printf("\%d =", i) ; PrintBinary ( \&i , sizeof(i) ); printf( "\%.1f = " , f ) ; PrintBinary (\&f , sizeof(f) ); return 0;
```

>> ./a.out
1 = 00000000 00000000 00000000 00000001
1.0 = 001111111 10000000 00000000 00000000
>>

```

\section*{Outline}
- Exercise 14
- Numerical representation
- Casting
- Random numbers
- Review questions

\section*{Random numbers}
stdlib. h declares two functions for generating random numbers int rand( void );
- Returns a random integer value between 0 and RAND_MAX
- RAND_MAX is a constant (at least \(32,767=2^{15}-1\) )
- Each call to rand creates a new random number
```

\#include <stdio.h>
\#include <stdlib.h>
int main(void)
{
printf("%d<=%d\n", rand(), RAND_MAX);
printf("%dk=%d\n", rand(), RAND_MAX);
return 0;
}

```

\section*{Random numbers}
stdlib. h declares two functions for generating random numbers int rand( void );
- Returns a random integer value between 0 and RAND_MAX
- RAND_MAX is a constant (at least \(32,767=2^{15}-1\) )
- Each call to rand creates a new random number
```

```
#include <stdio.h>
```

```
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
int main(void )
int main(void )
{
{
    printf( "%d<=%d\n",rand(),RAND_MAX );
    printf( "%d<=%d\n",rand(),RAND_MAX );
    printf("%dk=%d\n" ,>> ./a.out
    printf("%dk=%d\n" ,>> ./a.out
    return 0; 1804289383<=2147483647
    return 0; 1804289383<=2147483647
    return 0; 1804289383<=2147483647
    return 0; 1804289383<=2147483647
                                    846930886<=2147483647
```

 846930886<=2147483647
    ```
```

}

```
```

}

```

\section*{Random numbers}
stdlib. h declares two functions for generating random numbers void srand( unsigned int );
- Seeds the random number generator
- Calling rand after the random number has been seeded will consistently generate the same set of random numbers.
- Useful for debugging (for consistency)
- Useful for trying different values
```

\#include <stdio.h>
\#include <stdlib.h>
int main(void)
{
srand(1);
printf("%d , %d\n" , rand() , rand());
srand(2);
printf("%d , %d\n" , rand() , rand());
srand(1);
printf("%d, %d\n" , rand() , rand());
return 0;
}

```

\section*{Random numbers}
stdlib. h declares two functions for generating random numbers void srand( unsigned int );
- Seeds the random number generator
- Calling rand after the random number has been seeded will consistently generate the same set of random numbers.
- Useful for debugging (for consistency)
- Useful for trying different values
```

\#include <stdio.h>
\#include <stdlib.h>
int main(void)
{
srand(1);
printf("%d, %d\n", rand(), rand());
srand(2);
printf("%d, %d\n" , rand() , rand());
srand(1); >> ./a.out
printf("%d, %
return 0;
846930886 , 1804289383
}

```

\section*{Random numbers}

We can use rand to generate random numbers in an integer range
```

\#include <stdio.h>
\#include <stdlib.h>
int myRand(int low , int high)
{
return low + rand() % (high - low);
}
int main(void)
{
printf("%d, %d\n", myRand(2,6), myRand(2,6));
printf("%d, %d\n" , myRand(16,26),myRand(16,26))
return 0;
}
>> ./a.out
3, 5
21, 23

```

\section*{Random numbers}


\section*{Random numbers}

\section*{We can use rand to generate random numbers in a floating point range}
```

\#include <stdio.h>
\#include <stdlib.h>
float myRand(float low, float high)
{
return low + (float)rand()/RAND_MAX * (high - low);
}
int main(void)
{
printf("%f , %f\n" , myRand(2,6) , myRand(2,6));
printf("%f , %f\n" , myRand(16,26) , myRand(16,26));
return 0;
}
>> ./a.out
3.577532 , 5.360751
23.984400 , 23.830992

```
>>

\section*{Outline}
- Exercise 14
- Numerical representation
- Casting
- Review questions

\section*{Review questions}
1. What is two's complement representation?

It is a signed integer representation. The negative of a number is obtained by flipping the bits and adding one.

\section*{Review questions}
2. How does representation of integers and floating-point values differ in C?

The bits of an integer correspond to its representation in base two. The bits of a floating-point value are split into three parts - the sign, the mantissa, and the exponent.

\section*{Review questions}
3. What is type narrowing?

Converting a "higher rank" data type into a "lower rank" one char < unsigned char < int < unsigned int < long < unsigned long < float < double

\section*{Review questions}
4. What is type promotion?

Converting a "lower rank" data type into a "higher rank" one char < unsigned char < int < unsigned int < long < unsigned long < float < double

\section*{Review questions}
5. What is type casting?

Explicitly or implicitly converting a value from one type to another

\section*{Review questions}
6. What is the output of:
```

int n = 32065;
float x = 24.79;
printf("int n= %d but (char)n= %c\n" , n, (char)n);
printf("float x = %f but (long)x = %ld\n" , x, (long)x);

```

In binary, we have:

\section*{\(32065=(00000000000000000111110101000001)_{2}\)}

Casting to a char we get:
\[
\left.(01000001)_{2}=65-\right)^{\prime} A^{\prime}
\]
```

int n=32065 but (char)n=A
float x = 24.790001 but (long)x=24

```

\section*{Exercise 14}
- Website -> Course Materials -> Exercise 14```

