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Exercise 14

Convert char * message
to int number

Recall:

Conversion from binary is done by summing the powers of two that are 
marked with a “1” bit.

⋯ 𝑠3𝑠2 𝑠1𝑠0 2 ⋯ 𝒔𝟑 × 23 + 𝒔𝟐 × 22 + 𝒔𝟏 × 21 + 𝒔𝟎 × 20

encrypt.c
...
int str_to_int( char msg[] , int len )
{
 int num = 0;
 if( len>32 )
 {
  fprintf( stderr , "[WARNING] Insufficient bits\n“ );
  len = 32;
 }
 for( int i=0 ; i<len ; i++ ) if( msg[len-i-1]=='1' ) num += pow( 2 , i );
 return num;
}
...
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Exercise 14

Convert char * message
to int number

• Note that 2i = 1<<i

encrypt.c
...
int str_to_int( char msg[] , int len )
{
 int num = 0;
 if( len>32 )
 {
  fprintf( stderr , "[WARNING] Insufficient bits\n“ );
  len = 32;
 }
 for( int i=0 ; i<len ; i++ ) if( msg[len-i-1]=='1' ) num += 1<<i;
 return num;
}
...
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Exercise 14

Convert char * message
to int number

• Note that 2i = 1<<i
• Note that if i and j are

variables with no common
bits turned on (i&j==0) then
i+j = i|j

encrypt.c
...
int str_to_int( char msg[] , int len )
{
 int num = 0;
 if( len>32 )
 {
  fprintf( stderr , "[WARNING] Insufficient bits\n“ );
  len = 32;
 }
 for( int i=0 ; i<len ; i++ ) if( msg[len-i-1]=='1' ) num |= 1<<i;
 return num;
}
...
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Exercise 14

Convert int number
to char * message

encrypt.c
...
void int_to_str( int num_encrypted , char msg_encrypted[] , int len )
{
 for( int i=0 ; i<len ; i++ )
 {
  if( num_encrypted&1 ) msg_encrypted[len-i-1] = '1’;
  else                              msg_encrypted[len-i-1] = '0’;
  num_encrypted >>= 1;
 }
 if( num_encrypted )
  fprintf( stderr , "[WARNING] Insufficient bits\n“ );
}
...

6



Exercise 14

Compute the encrypted
message by repeatedly
left-shifting the message
by 1 and XORing.

encrypt.c
...
int main( void )
{
 int num_msg = 0; 
 char msg[33] = {'\0’};
 int n = -1;
 ...

 int num_encrypted = 0;

 for( int i=0 ; i<n ; i++ ) num_encrypted ^= num_msg<<i;
 ...

 return 0;
}
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• The integers are a set (of numbers)

• There is an addition operator, +, that takes a pair of integers and 
returns an integer
• There is a zero element, 0, with the property that adding zero to any integer 

gives back that integer:
𝑎 + 0 = 𝑎

• Every integer 𝑎 has an inverse −𝑎 such that the sum of the two is zero:
𝑎 + −𝑎 = 𝑎 − 𝑎 = 0

Arithmetic
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀
• Degrees in a circle (mod 360∘)

• Hours on a clock (mod 12)

Modular arithmetic

45∘

405∘

−315∘

𝑘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can represent integers mod 𝑀 using values in the range [0, 𝑀)
• While an integer is bigger than or equal to 𝑀, repeatedly subtract 𝑀

• While an integer is less than zero, repeatedly add 𝑀

Modular arithmetic

𝑘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can represent integers mod 𝑀 using values in the range [0, 𝑀)

• Or, we can represent integers mod 𝑀 using the range −
𝑀

2
,

𝑀

2

• While an integer is bigger than or equal to 
𝑀

2
, repeatedly subtract 𝑀

• While an integer is less than −
𝑀

2
, repeatedly add 𝑀

Modular arithmetic

𝑘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ = 225∘ + 180∘ = 405∘ = 45∘

Modular arithmetic

𝑘

180∘

225∘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ = 225∘ + 180∘ = 405∘ ≡ 45∘

Modular arithmetic

𝑘

180∘

225∘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ ≡ 225∘ + 180∘ = 405∘ ≡ 45∘

Modular arithmetic

𝑘

−180∘

225∘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎

Modular arithmetic

𝑘

−135∘

135∘

225∘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 = 0

Modular arithmetic

𝑘

−135∘

135∘

225∘
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• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 = 0

Modular arithmetic

𝑘

−135∘

135∘

225∘

18



• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are 
equivalent modulo 𝑀, if there is exists some integer    such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 ≡ 0

Modular arithmetic

𝑘

−135∘

135∘

225∘
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Bases (decimal)

• When we write out an integer in decimal notation, we represent it as a 
sum of “one”s, “ten”s, “hundred”s, etc.

365 = 𝟑 × 100 + 𝟔 × 10 + 𝟓 × 1
= 𝟑 × 102 + 𝟔 × 101 + 𝟓 × 100

• This is unique because each digit is in the range 0 to 9, written [0,10)

20



Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8
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Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8
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Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8
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Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8
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Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
1 0 3 8
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Bases (decimal)

Q: If we use three digits, how many numbers can we represent?

A: 1000 = 103 (including zero)

Note:

• The sum of two numbers represented using three digits may require four 
digits to store:

3 6 5
+ 6 7 3
1 0 3 8
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Bases (decimal)

Q: If we use three digits, how many numbers can we represent?

A: 1000 = 103 (including zero)

Note:

• The sum of two numbers represented using three digits may require four 
digits to store:

• If we only use three digits, we lose the leading digit to overflow

• This is the same as the number mod 103

3 6 5
+ 6 7 3

0 3 8

27



Bases (binary)

• We can also write out numbers in base two
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 8 + 𝒔𝟐 × 4 + 𝒔𝟏 × 2 + 𝒔𝟎 × 1

= 𝒔𝟑 × 23 + 𝒔𝟐 × 22 + 𝒔𝟏 × 21 + 𝒔𝟎 × 20

where  s0, s1, s2, s3 are one of 0 or 1.
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Bases (binary)

• As before, we add two numbers by adding the digits from smallest to 
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 3 8)2
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Bases (binary)

• As before, we add two numbers by adding the digits from smallest to 
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 3 1)2
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Bases (binary)

• As before, we add two numbers by adding the digits from smallest to 
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 0 1)2
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Bases (binary)

• As before, we add two numbers by adding the digits from smallest to 
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2
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Bases (binary)

• As before, we add two numbers by adding the digits from smallest to 
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2
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Bases (binary)

Q: Using three digits in base two, how many numbers can we represent?

A: 8 (including zero)

Note:

• As before, the sum of two numbers represented using three digits may 
require four digits to store: 1 1

(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2
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Bases (binary)

Q: Using three digits in base two, how many numbers can we represent?

A: 8 (including zero)

Note:

• As before, the sum of two numbers represented using three digits may 
require four digits to store:

• If we only use three digits, we lose the leading digit to overflow

• This is the same as the number mod 8.

(1 1 0)2

+ (0 1 1)2

(0 0 1)2
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Bases (decimal)

• Given a number in base 10:
16,384 = 𝟏 × 104 + 𝟔 × 103 + 𝟑 × 102 + 𝟖 × 101 + 𝟒 × 100

we can express the number in base 102 = 100 by grouping digits:
16,384 = 𝟏 × 1002 + 𝟔𝟑 × 1001 + 𝟖𝟒 × 1000

Similarly, we can express the number in base 103 = 1000, etc.
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Bases (two)

• Similarly, given a number in base two:
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 8 + 𝒔𝟐 × 4 + 𝒔𝟏 × 2 + 𝒔𝟎 × 1

we can express the number in base 22 = 4 by grouping digits:
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 𝟐 + 𝒔𝟐 × 4 + 𝒔𝟏 × 𝟐 + 𝒔𝟎 × 1

Similarly, we can express the number in base 23 = 8, etc.

37



Bases (examples)

What is the expression in base 10?

• 1101 2 =

38



Bases (examples)

What is the expression in base 10?

• 1101 2 = 𝟏 × 8 + 𝟏 × 4 + 𝟎 × 2 + 𝟏 × 1
= 8 + 4 + 1
= 13
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Bases (examples)

What is the expression in base 2?

• 27 =
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Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2
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Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2

What is the expression in base 4?

• 27 =

42



Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2

What is the expression in base 4?

• 27 = 16 + 8 + 3
= 𝟏 × 16 + 𝟐 × 4 + 𝟑 × 1
= 123 4
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Bases (in the wild)

• Decimal (base 10)
• We have ten fingers

• Sexagesimal (base 60):
• Minutes / seconds

• Easy to tell if a number is divisible by 2, 3, 4, 5, 6 , 10, 12, 15, or 30

• Dates back to the Babylonians
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Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
• Numbers in a computer (16 = 24)

• We can easily convert binary to hex by grouping sets of four digits

• We get a more compact representation, replacing 4 digits with 1
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Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
Q: How should we separate the digits? 115 16

• 115 16 = 𝟏 × 162 + 𝟏 × 161 + 𝟓 × 160

• 115 16 = 𝟏 × 161 + 𝟏𝟓 × 160

• 115 16 = 𝟏𝟏 × 161 + 𝟓 × 160
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Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
Q: How should we separate the digits? 115 16

A: Use numbers and letters:

• {0,1,2,3,4,5,6,7,8,9} to represent numbers in the range [0,10)

• {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} to represent values in the range [10,16):
• 115 16 = 𝟏 × 162 + 𝟏 × 161 + 𝟓 × 160

• 1𝑓 16 = 𝟏 × 161 + 𝟏𝟓 × 160

• 𝑏5 16 = 𝟏𝟏 × 161 + 𝟓 × 160
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Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes*
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

*“[...]” notation indicates an optional argument48



Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

#include <stdio.h>
int main( void )
{
 int a = 30;
 printf( "%d\n" , a );
 return 0;
}

>> ./a.out
30
>>
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Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

• You can assign using base 16 by preceding the number with 0x to indicate hex

#include <stdio.h>
int main( void )
{
 int a = 0x1e;
 printf( "%d\n" , a );
 return 0;
}

>> ./a.out
30
>>
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Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

• You can assign using base 16 by preceding the number with 0x to indicate hex

• You can print the base 16 representation by using %x for formatting

#include <stdio.h>
int main( void )
{
 int a = 30;
 printf( "%x\n" , a );
 return 0;
}

>> ./a.out
1e
>>
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Representing integers

• On most machines, [unsigned] chars are represented using 1 byte
⇒ A [unsigned] char can have one of 28 values

• On most machines, [unsigned] long ints are represented using 8 bytes
• A [unsigned] long int can have one of 264 values
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Representing integers*

⇒ An [unsigned] char can have one of 28 = 256 values

⇒ [unsigned] chars are integer values mod 28

• unsigned char: We will use the range 0,256 ** to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?
Integers mod 28 are integers mod 28, regardless of the representation!!!

53

*The following discussion will focus on chars, though it holds for other integer representations (e.g. ints and long ints)
** The notation [𝑎, 𝑏) indicates the half open interval, including 𝑎 but not 𝑏.



Representing integers

• unsigned char: We will use the range 0,256 to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?

A: Is 125 < 129 mod 256?

Since 129 ≡ −127 mod 256, 
it depends on the range we use

#include <stdio.h>
int main( void )
{

unsigned char c1 = 125 , c2 = 129;
 printf( "%d\n" , c1<c2 );
 return 0;
} >> ./a.out

1
>>
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Representing integers

• unsigned char: We will use the range 0,256 to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?

A: Is 125 < 129 mod 256?

Since 129 ≡ −127 mod 256, 
it depends on the range we use

#include <stdio.h>
int main( void )
{

char c1 = 125 , c2 = 129;
 printf( "%d\n" , c1<c2 );
 return 0;
} >> ./a.out

0
>>
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Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏, by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits 1 10001100 
11010011 2

+ 01000110 2

1 00011001 2

= 00011001 2
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Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏. by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits 

Q: What about subtraction, 𝑎 − 𝑏?

1 10001100 
11010011 2

+ 01000110 2

 00011001 2
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Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏. by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits 

Q: What about subtraction, 𝑎 − 𝑏 = 𝑎 + (−𝑏)?

Equivalently, how do we define the negative of a number?

1 10001100 
11010011 2

+ 01000110 2

 00011001 2
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Negation

• Recall:
The negative of an integer is the number we would have to add to get 
back zero.

• Defining negative one:
• Mod 256, we have −1 ≡ 255 = 11111111 2
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Negation

• Recall:
The negative of an integer is the number we would have to add to get 
back zero.

• Defining negatives in general:
1. Given a binary value in 8 bits:

10011101 2

2. We can flip the bits:
01100010 2

3. Adding the two values we get 255 ≡ −1:
11111111 2

4. Adding one to that we get 0
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Negation

• Recall:
The negative of an integer is the number we would have to add to get 
back zero.

• 2’s complement:
To get the binary representation of the negative of a number

1. Flip the bits

2. Add 1
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Floating point value representation

±𝑠 × 2𝑒

• On most machines, floats are represented using 4 bytes (32 bits)
• These are (roughly) used to encode:

• The sign (±): 1 bit

• The signed (integer) exponent (𝑒): 8 bits*

• The unsigned (integer) significand/mantissa/coefficient (𝑠): 23 bits

*This is what makes the point float62



Floating point value representation

±𝑠 × 2𝑒

• On most machines, doubles are represented using 8 bytes (64 bits)
• These are (roughly) used to encode:

• The sign (±): 1 bit

• The signed (integer) exponent (𝑒): 11 bits

• The unsigned (integer) significand/mantissa/coefficient (𝑠): 52 bits

63



Outline

• Exercise 14

• Numerical representation

• Casting

• Random Numbers

• Review questions
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

<type-1> lhs;

<type-2> rhs;

lhs = rhs;
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are integers and sizeof( LHS )>=sizeof( RHS )
⇒ the conversion happens without loss of information

#include <stdio.h>
int main( void )
{
 char c = ‘a’;

int i = c;
 printf( "%d -> %d\n" , c , i );
 return 0;
}

>> ./a.out
97 -> 97
>>
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are integers and sizeof( LHS )<sizeof( RHS )
⇒ an implicit “modulo” operation is performed
(modulo 2𝑏 where 𝑏 is the
number of bits in the LHS) #include <stdio.h>

int main( void )
{
 int i = 511;

char c = i;
 printf( "%d -> %d\n" , i , c );
 return 0;
}

>> ./a.out
511 -> -1
>>
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are floats and sizeof( LHS )>=sizeof( RHS )
⇒ the conversion happens without loss of information

#include <stdio.h>
int main( void )
{
 float f = 1.5;

double d = f;
 printf( "%.8f -> %.8f\n" , f , d );
 return 0;
}

>> ./a.out
1.50000000 -> 1.50000000
>>
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are floats and sizeof( LHS )<sizeof( RHS )
⇒ rounding is performed

#include <stdio.h>
int main( void )
{
 double d = 1.7;

float f = d;
 printf( "%.8f -> %.8f\n" , d , f );
 return 0;
}

>> ./a.out
1.70000000 -> 1.70000005
>>
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If the LHS is an integer and the RHS is a floating point value
⇒ the fractional part is discarded

#include <stdio.h>
int main( void )
{
 double d = -3.6;

int i = d;
 printf( "%.8f -> %d\n" , d , i );
 return 0;
}

>> ./a.out
-3.60000000 -> -3
>>

Note that this is not the same thing as rounding down to the nearest integer 70



Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If the LHS is a floating point value and the RHS is an integer
⇒ the closest floating point representation is used

#include <stdio.h>
int main( void )
{
 int i = 123456789;

float f = i;
 printf( "%d -> %.0f\n" , i , f );
 return 0;
}

>> ./a.out
123456789 -> 123456792
>>
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Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function

#include <stdio.h>
char foo( unsigned char c ){ return c; }
int main( void )
{
 double d = 511.5;
 float f = foo( d );
 printf( "%g -> %g\n" , d , f );
 return 0;
}

>> ./a.out
511.5 -> -1
>> 72



Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255 #include <stdio.h>
char foo( unsigned char c ){ return c; }
int main( void )
{
 double d = 511.5;
 float f = foo( d );
 printf( "%g -> %g\n" , d , f );
 return 0;
}

>> ./a.out
511.5 -> -1
>> 73



Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255

• unsigned char → char:
255 → -1

#include <stdio.h>
char foo( unsigned char c ){ return c; }
int main( void )
{
 double d = 511.5;
 float f = foo( d );
 printf( "%g -> %g\n" , d , f );
 return 0;
}

>> ./a.out
511.5 -> -1
>> 74



Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is 
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255

• unsigned char → char:
255 → -1

• char → float:
-1 → -1.f

#include <stdio.h>
char foo( unsigned char c ){ return c; }
int main( void )
{
 double d = 511.5;
 float f = foo( d );
 printf( "%g -> %g\n" , d , f );
 return 0;
}

>> ./a.out
511.5 -> -1
>> 75



Casting between types (numbers)

When casting, the types are ranked:

• Larger size integers/floats are “higher rank”
char < int < long
unsigned char < unsigned int < unsigned long
float < double

• Unsigned integers are “higher rank” than signed integers*

char < unsigned char < int < unsigned int < long < unsigned long
float < double

• Floating point values are “higher rank” than integers
char < unsigned char < int < unsigned int < long < unsigned long < float < double

*when they have the same size. 76



Casting between types (numbers)

When casting, the types are ranked:
char < unsigned char < int < unsigned int < long < unsigned long < float < double

When we cast from lower rank to higher rank, we are promoting.

When we cast from higher rank to lower rank, we are narrowing.
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Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main( void )
{
 int i = -1;
 unsigned int ui = 1;
 printf( "d\n" , i<ui );
 return 0;
}

>> ./a.out
0
>> 78



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main( void )
{
 int i = 2;
 double d = 2.5;
 i = i * d;
 printf( "%d\n" , i );
 return 0;
} >> ./a.out

5
>> 79



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main( void )
{
 int i = 2;
 double d = 2.5;

i *= d;
 printf( "%d\n" , i );
 return 0;
} >> ./a.out

5
>> 80



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main( void )
{
 int one = 1;
 int four = 4;
 int i = one / four * four;
 printf( "%d\n" , i );
 return 0;
} >> ./a.out

0
>> 81The arithmetic operators *, /, and % have the same precedence and are evaluated left-to-right.



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main( void )
{
 double one = 1;
 int four = 4;
 int i = one / four * four;
 printf( "%d\n" , i );
 return 0;
} >> ./a.out

1
>> 82The arithmetic operators *, /, and % have the same precedence and are evaluated left-to-right.



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

Since evaluation precedes assignment, we get
truncated results even though the LHS doesn’t
require it.

#include <stdio.h>
int main( void )
{
 int one = 1 , four = 4;
 float f = one / four;
 printf( "%g\n" , f );
 return 0;
}

>> ./a.out
0
>> 83



Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with 
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

The desired behavior can be forced with casting:
• Preceding the variable name with (<type-name>)

converts the variable to type <type-name>
• Since casting takes precedence

over arithmetic operations:
1. We convert one to a float
2. And then divide a float by an int

a. This implicitly promotes four to a float

b. And then performs float by float division

#include <stdio.h>
int main( void )
{
 int one = 1 , four = 4;
 float f = (float)one / four;
 printf( "%g\n" , f );
 return 0;
}

>> ./a.out
0.25
>> 84



Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types (though this could be dangerous)

• This needs to be done explicitly

#include <stdio.h>
int main( void )
{
 …
 int i = 1;
 int *ip = &i;
 float *fp= (float*)ip;
 …
}
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Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types

• This needs to be done explicitly

• Unless one of them has type void*

#include <stdio.h>
int main( void )
{
 …
 float *a = malloc( 10 * sizeof( float ) );
 …
}

…
void *malloc( size_t );
…
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Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types

• This needs to be done explicitly

• Unless one of them has type void*

• We can also explicitly cast
between pointers and integers
• This needs to be done with care since

a pointer can have different sizes on
different machines:
• 4 bytes on a 32-bit machine

• 8 bytes on a 64-bit machine

• The size_t type is guaranteed to 
always have the size of a pointer

#include <stdio.h>
int main( void )
{
 int i = 100;
 int *ip = &i;

size_t addr = (size_t)ip;
 printf( "Address is: %zu\n" , addr );
 return 0;
}
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Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers (of the same size)
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons
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Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons

#include <stdio.h>

void PrintBinary( const void *mem , size_t sz ){ ... }
int main( void )
{

int iArray[] = { 1 , 2 , 3 , 4 };
int *iPtr = iArray;
char *cPtr = (char *)iPtr;
PrintBinary( iPtr , sizeof(iPtr) );
PrintBinary( cPtr , sizeof(cPtr) );
return 0;

}>> ./a.out
00100000 01001001 11010100 11001000 11111100 01111111 00000000 00000000
00100000 01001001 11010100 11001000 11111100 01111111 00000000 00000000
>> 89



Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons

#include <stdio.h>

void PrintBinary( const void *mem , size_t sz ){ ... }
int main( void )
{

unsigned int ui =(1<<31)|1;
int i = ui;

 printf( " %u = " , ui ) ; PrintBinary( &ui , sizeof(ui) );
 printf( "%d = " , i ) ; PrintBinary( &i , sizeof(i) );

return 0;
} >> ./a.out

 2147483649 = 10000000 00000000 00000000 00000001
-2147483647 = 10000000 00000000 00000000 00000001
>>
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Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded
• integers integers (of different sizes)

91



Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded
• integers integers (of different sizes)

#include <stdio.h>

void PrintBinary( const void* mem , size_t sz ){ ... }
int main( void )
{
 int i = 254;
 unsigned char c = i;
 printf( "%d = " , i ) ; PrintBinary( &i , sizeof(i) );
 printf( "%d = " , c ) ; PrintBinary( &c , sizeof(c) );
 return 0;
}

>> ./a.out
254 = 00000000 00000000 00000000 11111110
254 = 11111110 
>>
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Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded

3. Binary representations are completely different
• integers floating point values

• floating point values floating point values (of different sizes)
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Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded

3. Binary representations are completely different
• integers floating point values

• floating point values floating point values (of different sizes)

#include <stdio.h>

void PrintBinary( const void* mem , size_t sz ){ ... }
int main( void )
{
 int i = 1;
 float f = i;
 printf( "%d   = " , i ) ; PrintBinary( &i , sizeof(i) );
 printf( "%.1f = " , f ) ; PrintBinary( &f , sizeof(f) );
 return 0;
}

>> ./a.out
1   = 00000000 00000000 00000000 00000001
1.0 = 00111111 10000000 00000000 00000000
>>
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Random numbers

stdlib.h declares two functions for generating random numbers

int rand( void );

• Returns a random integer value between 0 and RAND_MAX

• RAND_MAX is a constant (at least 32,767=215-1)

• Each call to rand creates a new
random number

#include <stdio.h>
#include <stdlib.h>

int main( void )
{
 printf( "%d<=%d\n" , rand() , RAND_MAX );
 printf( "%d<=%d\n" , rand() , RAND_MAX );
 return 0;
}
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Random numbers

stdlib.h declares two functions for generating random numbers

int rand( void );

• Returns a random integer value between 0 and RAND_MAX

• RAND_MAX is a constant (at least 32,767=215-1)

• Each call to rand creates a new
random number

#include <stdio.h>
#include <stdlib.h>

int main( void )
{
 printf( "%d<=%d\n" , rand() , RAND_MAX );
 printf( "%d<=%d\n" , rand() , RAND_MAX );
 return 0;
}

>> ./a.out
1804289383<=2147483647
846930886<=2147483647
>> 97



Random numbers

stdlib.h declares two functions for generating random numbers

void srand( unsigned int );

• Seeds the random number generator

• Calling rand after the random
number has been seeded will
consistently generate the same
set of random numbers.

• Useful for debugging (for consistency)

• Useful for trying different values

#include <stdio.h>
#include <stdlib.h>

int main( void )
{

srand( 1 );
 printf( "%d , %d\n" , rand() , rand() );
 srand( 2 );
 printf( "%d , %d\n" , rand() , rand() );

srand( 1 );
 printf( "%d , %d\n" , rand() , rand() );
 return 0;
}
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Random numbers

stdlib.h declares two functions for generating random numbers

void srand( unsigned int );

• Seeds the random number generator

• Calling rand after the random
number has been seeded will
consistently generate the same
set of random numbers.

• Useful for debugging (for consistency)

• Useful for trying different values

#include <stdio.h>
#include <stdlib.h>

int main( void )
{

srand( 1 );
 printf( "%d , %d\n" , rand() , rand() );
 srand( 2 );
 printf( "%d , %d\n" , rand() , rand() );

srand( 1 );
 printf( "%d , %d\n" , rand() , rand() );
 return 0;
}

>> ./a.out
846930886 , 1804289383
1738766719 , 1505335290
846930886 , 1804289383
>> 99



Random numbers

We can use rand to generate random numbers in an integer range

#include <stdio.h>
#include <stdlib.h>

int myRand( int low , int high )
{
 return low + rand() % ( high – low );
}
int main( void )
{
 printf( "%d , %d\n" , myRand(2,6) , myRand(2,6) );
 printf( "%d , %d\n" , myRand(16,26) , myRand(16,26) );
 return 0;
}

>> ./a.out
3, 5
21, 23
>> 100



Random numbers

We can use rand to generate random numbers in an integer range

#include <stdio.h>
#include <stdlib.h>

int myRand( int low , int high )
{
 return low + rand() % ( high – low );
}
int main( void )
{
 printf( "%d , %d\n" , myRand(2,6) , myRand(2,6) );
 printf( "%d , %d\n" , myRand(16,26) , myRand(16,26) );
 return 0;
}

>> ./a.out
3, 5
21, 23
>>

Note:
This creates random numbers in the range [low,high).
That is, the value high will never be generated, though 
low might.
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Random numbers

We can use rand to generate random numbers in a floating point range

#include <stdio.h>
#include <stdlib.h>

float myRand( float low , float high )
{
 return low + (float)rand() / RAND_MAX * ( high – low );
}
int main( void )
{
 printf( "%f , %f\n" , myRand(2,6) , myRand(2,6) );
 printf( "%f , %f\n" , myRand(16,26) , myRand(16,26) );
 return 0;
}

>> ./a.out
3.577532 , 5.360751
23.984400 , 23.830992
>> 102
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Review questions

1. What is two’s complement representation?

It is a signed integer representation. The negative of a number is 
obtained by flipping the bits and adding one.
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Review questions

2. How does representation of integers and floating-point values differ 
in C?

The bits of an integer correspond to its representation in base two.

The bits of a floating-point value are split into three parts – the sign, 
the mantissa, and the exponent.
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Review questions

3. What is type narrowing?

Converting a “higher rank” data type into a “lower rank” one
char < unsigned char < int < unsigned int < long < unsigned long < float < double
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Review questions

4. What is type promotion?

Converting a “lower rank” data type into a “higher rank” one
char < unsigned char < int < unsigned int < long < unsigned long < float < double
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Review questions

5. What is type casting?

Explicitly or implicitly converting a value from one type to another
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Review questions

6. What is the output of:

In binary, we have:

32065 = (00000000 00000000 01111101 01000001)2

Casting to a char we get:

(01000001)2 = 65 -> 'A'

int n = 32065;
float x = 24.79;
printf( "int n = %d but (char)n = %c\n" , n , (char)n );
printf( "float x = %f but (long)x = %ld\n" , x , (long)x );

int n = 32065 but (char)n = A
float x = 24.790001 but (long)x = 24
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Exercise 14

• Website -> Course Materials -> Exercise 14
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