
Intermediate Programming
Day 15

Outline

• Exercise 14

• Numerical representation

• Casting

• Random Numbers

• Review questions

2

Exercise 14

Convert char * message
to int number

Recall:

Conversion from binary is done by summing the powers of two that are
marked with a “1” bit.

⋯ 𝑠3𝑠2 𝑠1𝑠0 2 ⋯ 𝒔𝟑 × 23 + 𝒔𝟐 × 22 + 𝒔𝟏 × 21 + 𝒔𝟎 × 20

encrypt.c
...
int str_to_int(char msg[] , int len)
{
 int num = 0;
 if(len>32)
 {
 fprintf(stderr , "[WARNING] Insufficient bits\n“);
 len = 32;
 }
 for(int i=0 ; i<len ; i++) if(msg[len-i-1]=='1') num += pow(2 , i);
 return num;
}
...

3

Exercise 14

Convert char * message
to int number

• Note that 2i = 1<<i

encrypt.c
...
int str_to_int(char msg[] , int len)
{
 int num = 0;
 if(len>32)
 {
 fprintf(stderr , "[WARNING] Insufficient bits\n“);
 len = 32;
 }
 for(int i=0 ; i<len ; i++) if(msg[len-i-1]=='1') num += 1<<i;
 return num;
}
...

4

Exercise 14

Convert char * message
to int number

• Note that 2i = 1<<i
• Note that if i and j are

variables with no common
bits turned on (i&j==0) then
i+j = i|j

encrypt.c
...
int str_to_int(char msg[] , int len)
{
 int num = 0;
 if(len>32)
 {
 fprintf(stderr , "[WARNING] Insufficient bits\n“);
 len = 32;
 }
 for(int i=0 ; i<len ; i++) if(msg[len-i-1]=='1') num |= 1<<i;
 return num;
}
...

5

Exercise 14

Convert int number
to char * message

encrypt.c
...
void int_to_str(int num_encrypted , char msg_encrypted[] , int len)
{
 for(int i=0 ; i<len ; i++)
 {
 if(num_encrypted&1) msg_encrypted[len-i-1] = '1’;
 else msg_encrypted[len-i-1] = '0’;
 num_encrypted >>= 1;
 }
 if(num_encrypted)
 fprintf(stderr , "[WARNING] Insufficient bits\n“);
}
...

6

Exercise 14

Compute the encrypted
message by repeatedly
left-shifting the message
by 1 and XORing.

encrypt.c
...
int main(void)
{
 int num_msg = 0;
 char msg[33] = {'\0’};
 int n = -1;
 ...

 int num_encrypted = 0;

 for(int i=0 ; i<n ; i++) num_encrypted ^= num_msg<<i;
 ...

 return 0;
}

7

Outline

• Exercise 14

• Numerical representation

• Casting

• Random Numbers

• Review questions

8

• The integers are a set (of numbers)

• There is an addition operator, +, that takes a pair of integers and
returns an integer
• There is a zero element, 0, with the property that adding zero to any integer

gives back that integer:
𝑎 + 0 = 𝑎

• Every integer 𝑎 has an inverse −𝑎 such that the sum of the two is zero:
𝑎 + −𝑎 = 𝑎 − 𝑎 = 0

Arithmetic

9

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀
• Degrees in a circle (mod 360∘)

• Hours on a clock (mod 12)

Modular arithmetic

45∘

405∘

−315∘

𝑘

10

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can represent integers mod 𝑀 using values in the range [0, 𝑀)
• While an integer is bigger than or equal to 𝑀, repeatedly subtract 𝑀

• While an integer is less than zero, repeatedly add 𝑀

Modular arithmetic

𝑘

11

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can represent integers mod 𝑀 using values in the range [0, 𝑀)

• Or, we can represent integers mod 𝑀 using the range −
𝑀

2
,

𝑀

2

• While an integer is bigger than or equal to
𝑀

2
, repeatedly subtract 𝑀

• While an integer is less than −
𝑀

2
, repeatedly add 𝑀

Modular arithmetic

𝑘

12

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ = 225∘ + 180∘ = 405∘ = 45∘

Modular arithmetic

𝑘

180∘

225∘

13

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ = 225∘ + 180∘ = 405∘ ≡ 45∘

Modular arithmetic

𝑘

180∘

225∘

14

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀:
225∘ − 180∘ ≡ 225∘ + 180∘ = 405∘ ≡ 45∘

Modular arithmetic

𝑘

−180∘

225∘

15

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎

Modular arithmetic

𝑘

−135∘

135∘

225∘

16

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 = 0

Modular arithmetic

𝑘

−135∘

135∘

225∘

17

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 = 0

Modular arithmetic

𝑘

−135∘

135∘

225∘

18

• Given a positive integer, 𝑀, we say that two integers 𝑎 and 𝑏 are
equivalent modulo 𝑀, if there is exists some integer such that:

𝑎 ≡ 𝑏 + 𝑘 ⋅ 𝑀

• We can add numbers modulo 𝑀

• For any integer 𝑎, the negative of 𝑎 modulo 𝑀
can be represented by 𝑀 − 𝑎:

𝑎 + 𝑀 − 𝑎 = 𝑎 − 𝑎 + 𝑀 = 𝑀 ≡ 0

Modular arithmetic

𝑘

−135∘

135∘

225∘

19

Bases (decimal)

• When we write out an integer in decimal notation, we represent it as a
sum of “one”s, “ten”s, “hundred”s, etc.

365 = 𝟑 × 100 + 𝟔 × 10 + 𝟓 × 1
= 𝟑 × 102 + 𝟔 × 101 + 𝟓 × 100

• This is unique because each digit is in the range 0 to 9, written [0,10)

20

Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8

21

Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8

22

Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8

23

Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
2 0 3 8

24

Bases (decimal)

• We add two numbers by adding the digits from smallest to largest
• If the sum of digits falls outside the range [0,10) we carry

1 1
3 6 5

+ 6 7 3
1 0 3 8

25

Bases (decimal)

Q: If we use three digits, how many numbers can we represent?

A: 1000 = 103 (including zero)

Note:

• The sum of two numbers represented using three digits may require four
digits to store:

3 6 5
+ 6 7 3
1 0 3 8

26

Bases (decimal)

Q: If we use three digits, how many numbers can we represent?

A: 1000 = 103 (including zero)

Note:

• The sum of two numbers represented using three digits may require four
digits to store:

• If we only use three digits, we lose the leading digit to overflow

• This is the same as the number mod 103

3 6 5
+ 6 7 3

0 3 8

27

Bases (binary)

• We can also write out numbers in base two
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 8 + 𝒔𝟐 × 4 + 𝒔𝟏 × 2 + 𝒔𝟎 × 1

= 𝒔𝟑 × 23 + 𝒔𝟐 × 22 + 𝒔𝟏 × 21 + 𝒔𝟎 × 20

where s0, s1, s2, s3 are one of 0 or 1.

28

Bases (binary)

• As before, we add two numbers by adding the digits from smallest to
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 3 8)2

29

Bases (binary)

• As before, we add two numbers by adding the digits from smallest to
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 3 1)2

30

Bases (binary)

• As before, we add two numbers by adding the digits from smallest to
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 1 0 1)2

31

Bases (binary)

• As before, we add two numbers by adding the digits from smallest to
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2

32

Bases (binary)

• As before, we add two numbers by adding the digits from smallest to
largest, carrying if the sum is larger than 1:

1 1
(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2

33

Bases (binary)

Q: Using three digits in base two, how many numbers can we represent?

A: 8 (including zero)

Note:

• As before, the sum of two numbers represented using three digits may
require four digits to store: 1 1

(1 1 0)2

+ (0 1 1)2

(1 0 0 1)2

34

Bases (binary)

Q: Using three digits in base two, how many numbers can we represent?

A: 8 (including zero)

Note:

• As before, the sum of two numbers represented using three digits may
require four digits to store:

• If we only use three digits, we lose the leading digit to overflow

• This is the same as the number mod 8.

(1 1 0)2

+ (0 1 1)2

(0 0 1)2

35

Bases (decimal)

• Given a number in base 10:
16,384 = 𝟏 × 104 + 𝟔 × 103 + 𝟑 × 102 + 𝟖 × 101 + 𝟒 × 100

we can express the number in base 102 = 100 by grouping digits:
16,384 = 𝟏 × 1002 + 𝟔𝟑 × 1001 + 𝟖𝟒 × 1000

Similarly, we can express the number in base 103 = 1000, etc.

36

Bases (two)

• Similarly, given a number in base two:
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 8 + 𝒔𝟐 × 4 + 𝒔𝟏 × 2 + 𝒔𝟎 × 1

we can express the number in base 22 = 4 by grouping digits:
𝑠3𝑠2𝑠1𝑠0 2 = 𝒔𝟑 × 𝟐 + 𝒔𝟐 × 4 + 𝒔𝟏 × 𝟐 + 𝒔𝟎 × 1

Similarly, we can express the number in base 23 = 8, etc.

37

Bases (examples)

What is the expression in base 10?

• 1101 2 =

38

Bases (examples)

What is the expression in base 10?

• 1101 2 = 𝟏 × 8 + 𝟏 × 4 + 𝟎 × 2 + 𝟏 × 1
= 8 + 4 + 1
= 13

39

Bases (examples)

What is the expression in base 2?

• 27 =

40

Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2

41

Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2

What is the expression in base 4?

• 27 =

42

Bases (examples)

What is the expression in base 2?

• 27 = 16 + 8 + 2 + 1
= 𝟏 × 16 + 𝟏 × 8 + 𝟎 × 4 + 𝟏 × 2 + 𝟏 × 1
= 11011 2

What is the expression in base 4?

• 27 = 16 + 8 + 3
= 𝟏 × 16 + 𝟐 × 4 + 𝟑 × 1
= 123 4

43

Bases (in the wild)

• Decimal (base 10)
• We have ten fingers

• Sexagesimal (base 60):
• Minutes / seconds

• Easy to tell if a number is divisible by 2, 3, 4, 5, 6 , 10, 12, 15, or 30

• Dates back to the Babylonians

44

Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
• Numbers in a computer (16 = 24)

• We can easily convert binary to hex by grouping sets of four digits

• We get a more compact representation, replacing 4 digits with 1

45

Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
Q: How should we separate the digits? 115 16

• 115 16 = 𝟏 × 162 + 𝟏 × 161 + 𝟓 × 160

• 115 16 = 𝟏 × 161 + 𝟏𝟓 × 160

• 115 16 = 𝟏𝟏 × 161 + 𝟓 × 160

46

Bases (in the wild)

• Binary (base 2)
• Numbers in a computer

• Hexadecimal a.k.a. hex (base 16)
Q: How should we separate the digits? 115 16

A: Use numbers and letters:

• {0,1,2,3,4,5,6,7,8,9} to represent numbers in the range [0,10)

• {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} to represent values in the range [10,16):
• 115 16 = 𝟏 × 162 + 𝟏 × 161 + 𝟓 × 160

• 1𝑓 16 = 𝟏 × 161 + 𝟏𝟓 × 160

• 𝑏5 16 = 𝟏𝟏 × 161 + 𝟓 × 160

47

Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes*
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

*“[...]” notation indicates an optional argument48

Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

#include <stdio.h>
int main(void)
{
 int a = 30;
 printf("%d\n" , a);
 return 0;
}

>> ./a.out
30
>>

49

Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

• You can assign using base 16 by preceding the number with 0x to indicate hex

#include <stdio.h>
int main(void)
{
 int a = 0x1e;
 printf("%d\n" , a);
 return 0;
}

>> ./a.out
30
>>

50

Representing integers

• On most machines, [unsigned] ints are represented using 4 bytes
• Each byte is composed of 8 bits

⇒ An [unsigned] int is represented by 32 bits

• Each bit can be either “on” or “off”

⇒ An [unsigned] int is represented in binary
using 32 digits with values 0 or 1

⇒ An [unsigned] int can have one of 232 values

On the machine, a is assigned the value:

a ← 00000000 00000000 00000000 00011110 2

a ← 00 00 00 1𝑒 16

• You can assign using base 16 by preceding the number with 0x to indicate hex

• You can print the base 16 representation by using %x for formatting

#include <stdio.h>
int main(void)
{
 int a = 30;
 printf("%x\n" , a);
 return 0;
}

>> ./a.out
1e
>>

51

Representing integers

• On most machines, [unsigned] chars are represented using 1 byte
⇒ A [unsigned] char can have one of 28 values

• On most machines, [unsigned] long ints are represented using 8 bytes
• A [unsigned] long int can have one of 264 values

52

Representing integers*

⇒ An [unsigned] char can have one of 28 = 256 values

⇒ [unsigned] chars are integer values mod 28

• unsigned char: We will use the range 0,256 ** to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?
Integers mod 28 are integers mod 28, regardless of the representation!!!

53

*The following discussion will focus on chars, though it holds for other integer representations (e.g. ints and long ints)
** The notation [𝑎, 𝑏) indicates the half open interval, including 𝑎 but not 𝑏.

Representing integers

• unsigned char: We will use the range 0,256 to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?

A: Is 125 < 129 mod 256?

Since 129 ≡ −127 mod 256,
it depends on the range we use

#include <stdio.h>
int main(void)
{

unsigned char c1 = 125 , c2 = 129;
 printf("%d\n" , c1<c2);
 return 0;
} >> ./a.out

1
>>

54

Representing integers

• unsigned char: We will use the range 0,256 to represent integers

• char: We will use the range −128,128 to represent integers

Q: What’s the difference?

A: Is 125 < 129 mod 256?

Since 129 ≡ −127 mod 256,
it depends on the range we use

#include <stdio.h>
int main(void)
{

char c1 = 125 , c2 = 129;
 printf("%d\n" , c1<c2);
 return 0;
} >> ./a.out

0
>>

55

Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏, by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits 1 10001100
11010011 2

+ 01000110 2

1 00011001 2

= 00011001 2

56

Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏. by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits

Q: What about subtraction, 𝑎 − 𝑏?

1 10001100
11010011 2

+ 01000110 2

 00011001 2

57

Representing integers

• Addition:
We add two numbers, 𝑎 + 𝑏. by adding the digits from smallest to largest
• We carry as necessary

• And we cut off at 8 bits

Q: What about subtraction, 𝑎 − 𝑏 = 𝑎 + (−𝑏)?

Equivalently, how do we define the negative of a number?

1 10001100
11010011 2

+ 01000110 2

 00011001 2

58

Negation

• Recall:
The negative of an integer is the number we would have to add to get
back zero.

• Defining negative one:
• Mod 256, we have −1 ≡ 255 = 11111111 2

59

Negation

• Recall:
The negative of an integer is the number we would have to add to get
back zero.

• Defining negatives in general:
1. Given a binary value in 8 bits:

10011101 2

2. We can flip the bits:
01100010 2

3. Adding the two values we get 255 ≡ −1:
11111111 2

4. Adding one to that we get 0

60

Negation

• Recall:
The negative of an integer is the number we would have to add to get
back zero.

• 2’s complement:
To get the binary representation of the negative of a number

1. Flip the bits

2. Add 1

61

Floating point value representation

±𝑠 × 2𝑒

• On most machines, floats are represented using 4 bytes (32 bits)
• These are (roughly) used to encode:

• The sign (±): 1 bit

• The signed (integer) exponent (𝑒): 8 bits*

• The unsigned (integer) significand/mantissa/coefficient (𝑠): 23 bits

*This is what makes the point float62

Floating point value representation

±𝑠 × 2𝑒

• On most machines, doubles are represented using 8 bytes (64 bits)
• These are (roughly) used to encode:

• The sign (±): 1 bit

• The signed (integer) exponent (𝑒): 11 bits

• The unsigned (integer) significand/mantissa/coefficient (𝑠): 52 bits

63

Outline

• Exercise 14

• Numerical representation

• Casting

• Random Numbers

• Review questions

64

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

<type-1> lhs;

<type-2> rhs;

lhs = rhs;

65

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are integers and sizeof(LHS)>=sizeof(RHS)
⇒ the conversion happens without loss of information

#include <stdio.h>
int main(void)
{
 char c = ‘a’;

int i = c;
 printf("%d -> %d\n" , c , i);
 return 0;
}

>> ./a.out
97 -> 97
>>

66

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are integers and sizeof(LHS)<sizeof(RHS)
⇒ an implicit “modulo” operation is performed
(modulo 2𝑏 where 𝑏 is the
number of bits in the LHS) #include <stdio.h>

int main(void)
{
 int i = 511;

char c = i;
 printf("%d -> %d\n" , i , c);
 return 0;
}

>> ./a.out
511 -> -1
>>

67

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are floats and sizeof(LHS)>=sizeof(RHS)
⇒ the conversion happens without loss of information

#include <stdio.h>
int main(void)
{
 float f = 1.5;

double d = f;
 printf("%.8f -> %.8f\n" , f , d);
 return 0;
}

>> ./a.out
1.50000000 -> 1.50000000
>>

68

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If both are floats and sizeof(LHS)<sizeof(RHS)
⇒ rounding is performed

#include <stdio.h>
int main(void)
{
 double d = 1.7;

float f = d;
 printf("%.8f -> %.8f\n" , d , f);
 return 0;
}

>> ./a.out
1.70000000 -> 1.70000005
>>

69

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If the LHS is an integer and the RHS is a floating point value
⇒ the fractional part is discarded

#include <stdio.h>
int main(void)
{
 double d = -3.6;

int i = d;
 printf("%.8f -> %d\n" , d , i);
 return 0;
}

>> ./a.out
-3.60000000 -> -3
>>

Note that this is not the same thing as rounding down to the nearest integer 70

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

• If the LHS is a floating point value and the RHS is an integer
⇒ the closest floating point representation is used

#include <stdio.h>
int main(void)
{
 int i = 123456789;

float f = i;
 printf("%d -> %.0f\n" , i , f);
 return 0;
}

>> ./a.out
123456789 -> 123456792
>>

71

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function

#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
 double d = 511.5;
 float f = foo(d);
 printf("%g -> %g\n" , d , f);
 return 0;
}

>> ./a.out
511.5 -> -1
>> 72

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255 #include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
 double d = 511.5;
 float f = foo(d);
 printf("%g -> %g\n" , d , f);
 return 0;
}

>> ./a.out
511.5 -> -1
>> 73

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255

• unsigned char → char:
255 → -1

#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
 double d = 511.5;
 float f = foo(d);
 printf("%g -> %g\n" , d , f);
 return 0;
}

>> ./a.out
511.5 -> -1
>> 74

Casting between types (numbers)

When you assign a value to a variable, the right-hand-side (RHS) is
implicitly converted (a.k.a. cast) to the type of the left-hand-side (LHS)

The same rules apply when passing values to/from a function
• double → unsigned char:

511.5 → 511 → 255

• unsigned char → char:
255 → -1

• char → float:
-1 → -1.f

#include <stdio.h>
char foo(unsigned char c){ return c; }
int main(void)
{
 double d = 511.5;
 float f = foo(d);
 printf("%g -> %g\n" , d , f);
 return 0;
}

>> ./a.out
511.5 -> -1
>> 75

Casting between types (numbers)

When casting, the types are ranked:

• Larger size integers/floats are “higher rank”
char < int < long
unsigned char < unsigned int < unsigned long
float < double

• Unsigned integers are “higher rank” than signed integers*

char < unsigned char < int < unsigned int < long < unsigned long
float < double

• Floating point values are “higher rank” than integers
char < unsigned char < int < unsigned int < long < unsigned long < float < double

*when they have the same size. 76

Casting between types (numbers)

When casting, the types are ranked:
char < unsigned char < int < unsigned int < long < unsigned long < float < double

When we cast from lower rank to higher rank, we are promoting.

When we cast from higher rank to lower rank, we are narrowing.

77

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main(void)
{
 int i = -1;
 unsigned int ui = 1;
 printf("d\n" , i<ui);
 return 0;
}

>> ./a.out
0
>> 78

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main(void)
{
 int i = 2;
 double d = 2.5;
 i = i * d;
 printf("%d\n" , i);
 return 0;
} >> ./a.out

5
>> 79

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main(void)
{
 int i = 2;
 double d = 2.5;

i *= d;
 printf("%d\n" , i);
 return 0;
} >> ./a.out

5
>> 80

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main(void)
{
 int one = 1;
 int four = 4;
 int i = one / four * four;
 printf("%d\n" , i);
 return 0;
} >> ./a.out

0
>> 81The arithmetic operators *, /, and % have the same precedence and are evaluated left-to-right.

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

#include <stdio.h>
int main(void)
{
 double one = 1;
 int four = 4;
 int i = one / four * four;
 printf("%d\n" , i);
 return 0;
} >> ./a.out

1
>> 82The arithmetic operators *, /, and % have the same precedence and are evaluated left-to-right.

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

Since evaluation precedes assignment, we get
truncated results even though the LHS doesn’t
require it.

#include <stdio.h>
int main(void)
{
 int one = 1 , four = 4;
 float f = one / four;
 printf("%g\n" , f);
 return 0;
}

>> ./a.out
0
>> 83

Casting between types (numbers)

When performing a binary operation (arithmetic or comparison) with
different types the “lower rank” operand is implicitly promoted:

char < unsigned char < int < unsigned int < long < unsigned long < float < double

The desired behavior can be forced with casting:
• Preceding the variable name with (<type-name>)

converts the variable to type <type-name>
• Since casting takes precedence

over arithmetic operations:
1. We convert one to a float
2. And then divide a float by an int

a. This implicitly promotes four to a float

b. And then performs float by float division

#include <stdio.h>
int main(void)
{
 int one = 1 , four = 4;
 float f = (float)one / four;
 printf("%g\n" , f);
 return 0;
}

>> ./a.out
0.25
>> 84

Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types (though this could be dangerous)

• This needs to be done explicitly

#include <stdio.h>
int main(void)
{
 …
 int i = 1;
 int *ip = &i;
 float *fp= (float*)ip;
 …
}

85

Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types

• This needs to be done explicitly

• Unless one of them has type void*

#include <stdio.h>
int main(void)
{
 …
 float *a = malloc(10 * sizeof(float));
 …
}

…
void *malloc(size_t);
…

86

Casting between types (pointers)

• Since pointers represent locations in memory (independent of type)
• We can cast between pointer types

• This needs to be done explicitly

• Unless one of them has type void*

• We can also explicitly cast
between pointers and integers
• This needs to be done with care since

a pointer can have different sizes on
different machines:
• 4 bytes on a 32-bit machine

• 8 bytes on a 64-bit machine

• The size_t type is guaranteed to
always have the size of a pointer

#include <stdio.h>
int main(void)
{
 int i = 100;
 int *ip = &i;

size_t addr = (size_t)ip;
 printf("Address is: %zu\n" , addr);
 return 0;
}

87

Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers (of the same size)
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons

88

Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons

#include <stdio.h>

void PrintBinary(const void *mem , size_t sz){ ... }
int main(void)
{

int iArray[] = { 1 , 2 , 3 , 4 };
int *iPtr = iArray;
char *cPtr = (char *)iPtr;
PrintBinary(iPtr , sizeof(iPtr));
PrintBinary(cPtr , sizeof(cPtr));
return 0;

}>> ./a.out
00100000 01001001 11010100 11001000 11111100 01111111 00000000 00000000
00100000 01001001 11010100 11001000 11111100 01111111 00000000 00000000
>> 89

Casting between types

Three types of casting:

1. Nothing changes in the binary representation
• pointers pointers

• A memory address is a memory address

• The compiler needs to know the type to transform element offsets into byte offsets

• unsigned integers signed integers
• Different representations of numbers modulo 𝑀 still represent the same number

• The compiler needs to know the type for comparisons

#include <stdio.h>

void PrintBinary(const void *mem , size_t sz){ ... }
int main(void)
{

unsigned int ui =(1<<31)|1;
int i = ui;

 printf(" %u = " , ui) ; PrintBinary(&ui , sizeof(ui));
 printf("%d = " , i) ; PrintBinary(&i , sizeof(i));

return 0;
} >> ./a.out

 2147483649 = 10000000 00000000 00000000 00000001
-2147483647 = 10000000 00000000 00000000 00000001
>>

90

Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded
• integers integers (of different sizes)

91

Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded
• integers integers (of different sizes)

#include <stdio.h>

void PrintBinary(const void* mem , size_t sz){ ... }
int main(void)
{
 int i = 254;
 unsigned char c = i;
 printf("%d = " , i) ; PrintBinary(&i , sizeof(i));
 printf("%d = " , c) ; PrintBinary(&c , sizeof(c));
 return 0;
}

>> ./a.out
254 = 00000000 00000000 00000000 11111110
254 = 11111110
>>

92

Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded

3. Binary representations are completely different
• integers floating point values

• floating point values floating point values (of different sizes)

93

Casting between types

Three types of casting:

1. Nothing changes in the binary representation

2. Binary representations are truncated/expanded

3. Binary representations are completely different
• integers floating point values

• floating point values floating point values (of different sizes)

#include <stdio.h>

void PrintBinary(const void* mem , size_t sz){ ... }
int main(void)
{
 int i = 1;
 float f = i;
 printf("%d = " , i) ; PrintBinary(&i , sizeof(i));
 printf("%.1f = " , f) ; PrintBinary(&f , sizeof(f));
 return 0;
}

>> ./a.out
1 = 00000000 00000000 00000000 00000001
1.0 = 00111111 10000000 00000000 00000000
>>

94

Outline

• Exercise 14

• Numerical representation

• Casting

• Random numbers

• Review questions

95

Random numbers

stdlib.h declares two functions for generating random numbers

int rand(void);

• Returns a random integer value between 0 and RAND_MAX

• RAND_MAX is a constant (at least 32,767=215-1)

• Each call to rand creates a new
random number

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("%d<=%d\n" , rand() , RAND_MAX);
 printf("%d<=%d\n" , rand() , RAND_MAX);
 return 0;
}

96

Random numbers

stdlib.h declares two functions for generating random numbers

int rand(void);

• Returns a random integer value between 0 and RAND_MAX

• RAND_MAX is a constant (at least 32,767=215-1)

• Each call to rand creates a new
random number

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("%d<=%d\n" , rand() , RAND_MAX);
 printf("%d<=%d\n" , rand() , RAND_MAX);
 return 0;
}

>> ./a.out
1804289383<=2147483647
846930886<=2147483647
>> 97

Random numbers

stdlib.h declares two functions for generating random numbers

void srand(unsigned int);

• Seeds the random number generator

• Calling rand after the random
number has been seeded will
consistently generate the same
set of random numbers.

• Useful for debugging (for consistency)

• Useful for trying different values

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

srand(1);
 printf("%d , %d\n" , rand() , rand());
 srand(2);
 printf("%d , %d\n" , rand() , rand());

srand(1);
 printf("%d , %d\n" , rand() , rand());
 return 0;
}

98

Random numbers

stdlib.h declares two functions for generating random numbers

void srand(unsigned int);

• Seeds the random number generator

• Calling rand after the random
number has been seeded will
consistently generate the same
set of random numbers.

• Useful for debugging (for consistency)

• Useful for trying different values

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

srand(1);
 printf("%d , %d\n" , rand() , rand());
 srand(2);
 printf("%d , %d\n" , rand() , rand());

srand(1);
 printf("%d , %d\n" , rand() , rand());
 return 0;
}

>> ./a.out
846930886 , 1804289383
1738766719 , 1505335290
846930886 , 1804289383
>> 99

Random numbers

We can use rand to generate random numbers in an integer range

#include <stdio.h>
#include <stdlib.h>

int myRand(int low , int high)
{
 return low + rand() % (high – low);
}
int main(void)
{
 printf("%d , %d\n" , myRand(2,6) , myRand(2,6));
 printf("%d , %d\n" , myRand(16,26) , myRand(16,26));
 return 0;
}

>> ./a.out
3, 5
21, 23
>> 100

Random numbers

We can use rand to generate random numbers in an integer range

#include <stdio.h>
#include <stdlib.h>

int myRand(int low , int high)
{
 return low + rand() % (high – low);
}
int main(void)
{
 printf("%d , %d\n" , myRand(2,6) , myRand(2,6));
 printf("%d , %d\n" , myRand(16,26) , myRand(16,26));
 return 0;
}

>> ./a.out
3, 5
21, 23
>>

Note:
This creates random numbers in the range [low,high).
That is, the value high will never be generated, though
low might.

101

Random numbers

We can use rand to generate random numbers in a floating point range

#include <stdio.h>
#include <stdlib.h>

float myRand(float low , float high)
{
 return low + (float)rand() / RAND_MAX * (high – low);
}
int main(void)
{
 printf("%f , %f\n" , myRand(2,6) , myRand(2,6));
 printf("%f , %f\n" , myRand(16,26) , myRand(16,26));
 return 0;
}

>> ./a.out
3.577532 , 5.360751
23.984400 , 23.830992
>> 102

Outline

• Exercise 14

• Numerical representation

• Casting

• Review questions

103

Review questions

1. What is two’s complement representation?

It is a signed integer representation. The negative of a number is
obtained by flipping the bits and adding one.

104

Review questions

2. How does representation of integers and floating-point values differ
in C?

The bits of an integer correspond to its representation in base two.

The bits of a floating-point value are split into three parts – the sign,
the mantissa, and the exponent.

105

Review questions

3. What is type narrowing?

Converting a “higher rank” data type into a “lower rank” one
char < unsigned char < int < unsigned int < long < unsigned long < float < double

106

Review questions

4. What is type promotion?

Converting a “lower rank” data type into a “higher rank” one
char < unsigned char < int < unsigned int < long < unsigned long < float < double

107

Review questions

5. What is type casting?

Explicitly or implicitly converting a value from one type to another

108

Review questions

6. What is the output of:

In binary, we have:

32065 = (00000000 00000000 01111101 01000001)2

Casting to a char we get:

(01000001)2 = 65 -> 'A'

int n = 32065;
float x = 24.79;
printf("int n = %d but (char)n = %c\n" , n , (char)n);
printf("float x = %f but (long)x = %ld\n" , x , (long)x);

int n = 32065 but (char)n = A
float x = 24.790001 but (long)x = 24

109

Exercise 14

• Website -> Course Materials -> Exercise 14

110

	Slide 1: Intermediate Programming Day 15
	Slide 2: Outline
	Slide 3: Exercise 14
	Slide 4: Exercise 14
	Slide 5: Exercise 14
	Slide 6: Exercise 14
	Slide 7: Exercise 14
	Slide 8: Outline
	Slide 9: Arithmetic
	Slide 10: Modular arithmetic
	Slide 11: Modular arithmetic
	Slide 12: Modular arithmetic
	Slide 13: Modular arithmetic
	Slide 14: Modular arithmetic
	Slide 15: Modular arithmetic
	Slide 16: Modular arithmetic
	Slide 17: Modular arithmetic
	Slide 18: Modular arithmetic
	Slide 19: Modular arithmetic
	Slide 20: Bases (decimal)
	Slide 21: Bases (decimal)
	Slide 22: Bases (decimal)
	Slide 23: Bases (decimal)
	Slide 24: Bases (decimal)
	Slide 25: Bases (decimal)
	Slide 26: Bases (decimal)
	Slide 27: Bases (decimal)
	Slide 28: Bases (binary)
	Slide 29: Bases (binary)
	Slide 30: Bases (binary)
	Slide 31: Bases (binary)
	Slide 32: Bases (binary)
	Slide 33: Bases (binary)
	Slide 34: Bases (binary)
	Slide 35: Bases (binary)
	Slide 36: Bases (decimal)
	Slide 37: Bases (two)
	Slide 38: Bases (examples)
	Slide 39: Bases (examples)
	Slide 40: Bases (examples)
	Slide 41: Bases (examples)
	Slide 42: Bases (examples)
	Slide 43: Bases (examples)
	Slide 44: Bases (in the wild)
	Slide 45: Bases (in the wild)
	Slide 46: Bases (in the wild)
	Slide 47: Bases (in the wild)
	Slide 48: Representing integers
	Slide 49: Representing integers
	Slide 50: Representing integers
	Slide 51: Representing integers
	Slide 52: Representing integers
	Slide 53: Representing integers*
	Slide 54: Representing integers
	Slide 55: Representing integers
	Slide 56: Representing integers
	Slide 57: Representing integers
	Slide 58: Representing integers
	Slide 59: Negation
	Slide 60: Negation
	Slide 61: Negation
	Slide 62: Floating point value representation
	Slide 63: Floating point value representation
	Slide 64: Outline
	Slide 65: Casting between types (numbers)
	Slide 66: Casting between types (numbers)
	Slide 67: Casting between types (numbers)
	Slide 68: Casting between types (numbers)
	Slide 69: Casting between types (numbers)
	Slide 70: Casting between types (numbers)
	Slide 71: Casting between types (numbers)
	Slide 72: Casting between types (numbers)
	Slide 73: Casting between types (numbers)
	Slide 74: Casting between types (numbers)
	Slide 75: Casting between types (numbers)
	Slide 76: Casting between types (numbers)
	Slide 77: Casting between types (numbers)
	Slide 78: Casting between types (numbers)
	Slide 79: Casting between types (numbers)
	Slide 80: Casting between types (numbers)
	Slide 81: Casting between types (numbers)
	Slide 82: Casting between types (numbers)
	Slide 83: Casting between types (numbers)
	Slide 84: Casting between types (numbers)
	Slide 85: Casting between types (pointers)
	Slide 86: Casting between types (pointers)
	Slide 87: Casting between types (pointers)
	Slide 88: Casting between types
	Slide 89: Casting between types
	Slide 90: Casting between types
	Slide 91: Casting between types
	Slide 92: Casting between types
	Slide 93: Casting between types
	Slide 94: Casting between types
	Slide 95: Outline
	Slide 96: Random numbers
	Slide 97: Random numbers
	Slide 98: Random numbers
	Slide 99: Random numbers
	Slide 100: Random numbers
	Slide 101: Random numbers
	Slide 102: Random numbers
	Slide 103: Outline
	Slide 104: Review questions
	Slide 105: Review questions
	Slide 106: Review questions
	Slide 107: Review questions
	Slide 108: Review questions
	Slide 109: Review questions
	Slide 110: Exercise 14

