
Intermediate Programming
Day 13

1

Outline

• Exercise 12

• Lifetime and scope

• structs

• typedef

• Review questions

2

Exercise 12

Declare and define search.

3

bsearch.c
...
int *search(int *start , int *end , int s_val);

int main(void) {
 ...
}

int *search(int *start , int *end , int s_val)
{
 if(start==end) return NULL;
 int *mid = start + (end-start)/2;
 if(*mid==s_val) return mid;
 else if(*mid<s_val) return search(mid+1 , end , s_val);
 else return search(start , mid , s_val);
}

Exercise 12

Compute the index of the
matching element

4

bsearch.c
...
int *search(int *start , int *end , int s_val);

int main(void) {
 ...
 int arr1[] = { 11, 119, 318, 518, 573, 750, 757, 809, 813, 994 };

 // example of a successful search
 pos = search(arr1, arr1 + 10, 809);
 assert(pos != NULL);
 assert(*pos == 809);
 index = pos - arr1;
 assert(7 == index);
 ...
}

int *search(int *start , int *end , int s_val)
{
 if(start==end) return NULL;
 int *mid = start + (end-start)/2;
 if(*mid==s_val) return mid;
 else if(*mid<s_val) return search(mid+1 , end , s_val);
 else return search(start , mid , s_val);
}

Exercise 12

Declare the unit array.

5

sudokuHelper.c
...
int *makeCol(int *table) {
 // TODO: declare the unit variable (array of 9 integers, to be returned)

 int *unit = malloc(sizeof(int) * SIZE);
if(!unit)
{

 fprintf(stderr , "[ERROR] Failed to allocate unit\n");
 return NULL;
 }
 ...
}

int *makeCube(int *table) {
 // TODO: declare the unit variable (array of 9 integers, to be returned)

 int *unit = malloc(sizeof(int) * SIZE);
 if(!unit)
 {
 fprintf(stderr , "[ERROR] Failed to allocate unit\n");
 return NULL;
 }
 ...
}
...

Exercise 12

Call check on current row
and add to variable good

6

sudokuHelper.c
...
int checkRows(int table[][SIZE]) {
 int good = 0;
 for (int r = 0; r < SIZE; r++) {
 // TODO: call check on current row and add to variable good

 good += check(table[r]);
 }
 return (good==SIZE);
}
...

Exercise 12

Call makeCol/makeCube
on current column/cube
and assign result to
variable column/cube

7

sudokuHelper.c
...
int checkCols(int table[][SIZE]) {
 int good = 0;
 int *column;
 for(int c=0 ; c<SIZE ; c++) {
 // TODO: call makeCol on current column and assign result to variable column

 column = makeCol(table[0]+c);
 good += check(column);
 }
 return (good==SIZE);
}

int checkCubes(int table[][SIZE]) {
 int good = 0;
 int *cube;
 for(int r=0 ; r<SIZE ; r+=3)
 for(int c=0 ; c<SIZE ; c+=3) {
 // TODO: call makeCube on current cube and assign result to variable cube

 cube = makeCube(table[r]+c);
 good += check(cube);
 }
 return (good == SIZE);
}
...

Exercise 12

Find and fix the
memory leaks

8

>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzle1.txt
...
==3710153== HEAP SUMMARY:
==3710153== in use at exit: 1,120 bytes in 19 blocks
==3710153== total heap usage: 21 allocs, 2 frees, 10,336 bytes allocated
==3710153==
==3710153== 324 bytes in 9 blocks are definitely lost in loss record 1 of 3
==3710153== at 0x484186F: malloc (vg_replace_malloc.c:381)
==3710153== by 0x4013F9: makeCol (sudokuHelpers.c:22)
==3710153== by 0x4015A7: checkCols (sudokuHelpers.c:85)
==3710153== by 0x401317: main (in /home/misha/CS220/exercises/ex12/main)

Exercise 12

Find and fix the
memory leaks

9

>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzle1.txt
...
==3710153== HEAP SUMMARY:
==3710153== in use at exit: 1,120 bytes in 19 blocks
==3710153== total heap usage: 21 allocs, 2 frees, 10,336 bytes allocated
==3710153==
==3710153== 324 bytes in 9 blocks are definitely lost in loss record 1 of 3
==3710153== at 0x484186F: malloc (vg_replace_malloc.c:381)
==3710153== by 0x4013F9: makeCol (sudokuHelpers.c:22)
==3710153== by 0x4015A7: checkCols (sudokuHelpers.c:85)
==3710153== by 0x401317: main (in /home/misha/CS220/exercises/ex12/main)

sudokuHelper.c
...
21. int* makeCol(int *table) {
22. int *unit = malloc(sizeof(int) * SIZE);
23. if(!unit)
24. {
25. fprintf(stderr , "[ERROR] Failed to allocate unit\n");
26. return NULL;
27. }
 ...
81. int checkCols(int table[][SIZE]) {
82. int good = 0;
83. int * column;
84. for(int c=0 ; c<SIZE ; c++) {
85. column = makeCol(table[0]+c);
86. good += check(column);
87. }
88. return (good==SIZE);
89. }
…

Exercise 12

Find and fix the
memory leaks

10

sudokuHelper.c
...
21. int* makeCol(int *table) {
22. int *unit = malloc(sizeof(int) * SIZE);
23. if(!unit)
24. {
25. fprintf(stderr , "[ERROR] Failed to allocate unit\n");
26. return NULL;
27. }
 ...
81. int checkCols(int table[][SIZE]) {
82. int good = 0;
83. int * column;
84. for(int c=0 ; c<SIZE ; c++) {
85. column = makeCol(table[0]+c);
86. good += check(column);
87. free(column);
88. }
89. return (good==SIZE);
90. }
91. int checkCubes(int table[][SIZE]) {
92. int good = 0;
93. int * cube;
94. for (int r = 0; r < SIZE; r += 3)
95. for (int c = 0; c < SIZE; c += 3) {
96. cube = makeCube(table[r]+c);
97. good += check(cube);
98. free(cube);
99. }
100. return (good==SIZE);
101. }
…

Exercise 12

Find and fix the
memory leaks

11

sudokuHelper.c
...
21. int* makeCol(int *table) {
22. int *unit = malloc(sizeof(int) * SIZE);
23. if(!unit)
24. {
25. fprintf(stderr , "[ERROR] Failed to allocate unit\n");
26. return NULL;
27. }
 ...
81. int checkCols(int table[][SIZE]) {
82. int good = 0;
83. int * column;
84. for(int c=0 ; c<SIZE ; c++) {
85. column = makeCol(table[0]+c);
86. good += check(column);
87. free(column);
88. }
89. return (good==SIZE);
90. }
91. int checkCubes(int table[][SIZE]) {
92. int good = 0;
93. int * cube;
94. for (int r = 0; r < SIZE; r += 3)
95. for (int c = 0; c < SIZE; c += 3) {
96. cube = makeCube(table[r]+c);
97. good += check(cube);
98. free(cube);
99. }
100. return (good==SIZE);
101. }
…

>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzle1.txt
...
==3923831== HEAP SUMMARY:
==3923831== in use at exit: 472 bytes in 1 blocks
==3923831== total heap usage: 21 allocs, 20 frees, 10,336 bytes allocated
==3923831==
==3923831== 472 bytes in 1 blocks are still reachable in loss record 1 of 1
==3923831== at 0x484186F: malloc (vg_replace_malloc.c:381)
==3923831== by 0x48FA46E: __fopen_internal (iofopen.c:65)
==3923831== by 0x4011E9: main (sudoku.c:11)
==3923831==
==3923831== LEAK SUMMARY:
...

Exercise 12

Find and fix the
memory leaks

12

>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzle1.txt
...
==3923831== HEAP SUMMARY:
==3923831== in use at exit: 472 bytes in 1 blocks
==3923831== total heap usage: 21 allocs, 20 frees, 10,336 bytes allocated
==3923831==
==3923831== 472 bytes in 1 blocks are still reachable in loss record 1 of 1
==3923831== at 0x484186F: malloc (vg_replace_malloc.c:381)
==3923831== by 0x48FA46E: __fopen_internal (iofopen.c:65)
==3923831== by 0x4011E9: main (sudoku.c:11)
==3923831==
==3923831== LEAK SUMMARY:
...

sudoku.c
...
5. int main(int argc, char * argv[]) {
6.
7. if (argc < 2) {
8. fprintf(stderr, "invalid program call\n");
9. return 1; // incorrect program usage
10. }
11. FILE* infile = fopen(argv[1], "r");
...
... Read the board from the file
…
28. if (checkRows(puzzle) && checkCols(puzzle) && checkCubes(puzzle))
29. printf("puzzle is correctly solved\n");
30. else
31. printf("puzzle is not [correctly] solved\n");
32. return 0;
33. }

Exercise 12

Find and fix the
memory leaks

13

>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzle1.txt
...
==3720658== HEAP SUMMARY:
==3720658== in use at exit: 0 bytes in 0 blocks
==3720658== total heap usage: 21 allocs, 21 frees, 10,336 bytes allocated
==3720658==
==3720658== All heap blocks were freed -- no leaks are possible

sudoku.c
...
5. int main(int argc, char * argv[]) {
6.
7. if (argc < 2) {
8. fprintf(stderr, "invalid program call\n");
9. return 1; // incorrect program usage
10. }
11. FILE* infile = fopen(argv[1], "r");
...
... Read the board from the file
…
28. if (checkRows(puzzle) && checkCols(puzzle) && checkCubes(puzzle))
29. printf("puzzle is correctly solved\n");
30. else
31. printf("puzzle is not [correctly] solved\n");
32. fclose(infile);
33. return 0;
34. }

Outline

• Exercise 12

• Lifetime and scope

• structs

• typedef

• Review questions

14

Variable lifetime and scope

• Variables declared in C programs have:
• lifetime: How long is the variable in memory?

• Both f and i have a lifetime equal to the duration of the main function
(They come into existence when main’s stack frame is created and disappear when it’s gone)

• scope: Where is the variable name accessible?
• f is in scope from the point it is declared to the end of the main function (lines 4-7)

• i is in scope for the for loop (lines 5-6)

15

1. #include <stdio.h>
2. int main(void)
3. {
4. int f= 1;
5. for(int i=2 ; i<6 ; i++)
6. f*= i;
7. printf(“%d\n” , f);
8. }

main stack frame

f i

Variable lifetime and scope

Q: What are the lifetimes of the variables i?
A: Both have a lifetime equal to the duration of the main function

Q: What are the scopes of the variables i?
A: The first comes into scope when it is declared, is shadowed / hidden during the

for loop, and re-emerges after (lines 4, 7)

The second is in scope during the
for loop (lines 5-6)

16

i i

1. #include <stdio.h>
2. int main(void)
3. {
4. int i,f=1;
5. for(int i=2 ; i<6 ; i++)
6. f*= i;
7. printf(“%d\n” , f);
8. }

main stack frame

f

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

17

#include <stdio.h>
void foo(int i)
{
 static int count;
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1) ;
 foo(7);
 return 0;
}

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

• But… prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function
• The variable is automatically

initialized to have zero value

18

#include <stdio.h>
void foo(int i)
{

static int count;
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1) ;
 foo(7);
 return 0;
}

>> ./a.out
0] foo(1)
1] foo(7)
>>

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

• But… prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function
• The variable is automatically

initialized to have zero value

• If you declare and assign, the
assignment only happens the first
time the function is called. 19

#include <stdio.h>
void foo(int i)
{

static int count=5;
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1) ;
 foo(7);
 return 0;
}

>> ./a.out
5] foo(1)
6] foo(7)
>>

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

• But… prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function

• But the variable is still only
scoped within the function

20

#include <stdio.h>
void foo(int i)
{

static int count=5;
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1);
 printf(“%d\n” , count);
 return 0;
}

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

• But… prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function

• But the variable is still only
scoped within the function

21

#include <stdio.h>
void foo(int i)
{

static int count=5;
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1);
 printf(“%d\n” , count);
 return 0;
}

Note:
Because a static variable’s lifespan extends beyond
the function call, it does not reside on the stack.
(static variables are stored in the data segment.)

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• We can also define global variables outside of any function

• They have a lifetime equal to the
lifetime of the program
• They are initialized to zero

• They are accessible to any function
following the declaration

22

#include <stdio.h>
int count;
void foo(int i)
{
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1);
 printf(“%d\n” , count);
 return 0;
}

>> ./a.out
0] foo(1)
1
>>

Variable lifetime and scope

• Variables declared in C programs have lifetime and scope
• We can also define global variables outside of any function

• They have a lifetime equal to the
lifetime of the program
• They are initialized to zero

• They are accessible to any function
following the declaration

23

#include <stdio.h>
int count;
void foo(int i)
{
 printf(“%d] foo(%d)\n” , count++ , i);
}
int main(void)
{
 foo(1);
 printf(“%d\n” , count);
 return 0;
}

>> ./a.out
0] foo(1)
1
>>

Note:
Like static variables, global variables
do not reside on the stack.
(They too are stored in the data segment.)

Variable lifetime and scope

Global variables:
• Like functions, you can define

global variables in one source file
and use them in another.

• At compile time, the compiler only
needs to know the declaration, not
the definition.

• At link time, the linker will bind
the declared variables to their
definitions.

24

#include <stdio.h>

void incrementCount(int i)
{
 extern int count;
 count += i;
}
int main(void)
{
 extern int count;
 incrementCount(5);
 printf(“%d\n” , count);
 return 0;
}

main.c

int count = 3;
foo.c

Variable lifetime and scope

Global variables:
• Like functions, you can define

global variables in one source file
and use them in another.

• At compile time, the compiler only
needs to know the declaration, not
the definition.

• At link time, the linker will bind
the declared variables to their
definitions.

• The extern keyword can be used
to declare global variables that are
defined elsewhere (either in the
same file or in other files). 25

#include <stdio.h>

void incrementCount(int i)
{

extern int count;
 count += i;
}
int main(void)
{

extern int count;
 incrementCount(5);
 printf(“%d\n” , count);
 return 0;
}

main.c

>> gcc main.c foo.c ...
>> ./a.out
8
>>

int count = 3;
foo.c

Variable lifetime and scope

Global variables:
• Like functions, you can define

global variables in one source file
and use them in another.

• At compile time, the compiler only
needs to know the declaration, not
the definition.

• At link time, the linker will bind
the declared variables to their
definitions.

• The extern keyword can be used
to declare global variables that are
defined elsewhere (either in the
same file or in other files). 26

#include <stdio.h>
extern int count;

void incrementCount(int i)
{

count += i;
}
int main(void)
{
 incrementCount(5);
 printf(“%d\n” , count);
 return 0;
}

main.c

>> gcc main.c foo.c ...
>> ./a.out
8
>>

int count = 3;
foo.c

You can also declare the variable
outside of a function call so that all
(subsequent) functions calls have
access to it.

Beware the global variable

Usage of global variables is generally discouraged
Debugging is harder – less clear which function changed a global variable’s value

(since it could be any!)

Global variables cross boundaries between program modules, undoing benefits of
modular code
• readability

• testability

 In general, values should be conveyed via parameter passing and return values

✓Boolean global variables could be useful for debugging if you only want to printf
within one function based on a condition being met in a different function.

27

Outline

• Exercise 12

• Lifetime and scope

• structs

• typedef

• Review questions

28

Structures (structs)

• If we have an application that stores students' ages and grades, we
can represent a student's data by an array of float values. (E.g. by
storing the data for N students in a float array of size 2N.)

Q: What if we want to store other (non-numerical) data like names?

A: A structure is a collection of variables (often heterogeneously-typed)
that are bundled together as a unit under a single name

29

Structures (structs)

• Use the struct keyword to define a new type

30

struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};

Structures (structs)

• Use the struct keyword to define a new type
• It has a (type) name

31

struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};

Structures (structs)

• Use the struct keyword to define a new type
• It has a (type) name

• And a list of variables (members)

32

struct Rec
{

unsigned int eNum;
const char * name;
float salary;

};

Structures (structs)

• Use the struct keyword to define a new type
• It has a (type) name

• And a list of variables (members)

• Variables of the type are declared using the
struct keyword and the struct (type) name

33

struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};

struct Rec boss;
struct Rec assistant;

Structures (structs)

• Use the struct keyword to define a new type
• It has a (type) name

• And a list of variables (members)

• Variables of the type are declared using the
struct keyword and the struct (type) name
• Can initialize members using array syntax

• Variable order must match declaration order

34

struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};

struct Rec boss;
struct Rec assistant;

boss = { 1 , "misha" , 0.f };

Structures (structs)

• Use the struct keyword to define a new type
• It has a (type) name

• And a list of variables (members)

• Variables of the type are declared using the
struct keyword and the struct (type) name
• Can initialize members using array syntax

• Or member-by-member, using the "." operator

35

struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};

struct Rec boss;
struct Rec assistant;

boss = { 1 , "misha" , 0.f };

boss.eNum = 1;
boss.name = "misha";
boss.salary = 0.f;

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents

36

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{

struct Rec rec;
 …
 return 0;
}

address space

struct Rec

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof …

37

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{

struct Rec rec;
 printf(“Size: %d\n” ,
 (int)sizeof(rec));
 return 0;
}

address space

struct Rec

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

38

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{

struct Rec rec;
 printf(“Size: %d\n” ,
 (int)sizeof(rec));
 return 0;
}

address space

struct Rec

>> ./a.out
Size: 24
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

39

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 printf("%d + " , sizeof(unsigned int));
 printf("%d + " , sizeof(const char*));
 printf("%d = " , sizeof(float));
 printf("%d\n" , sizeof(struct Rec));
 return 0;
}

>> ./a.out
4 + 8 + 4 = 24
>>

address space

struct Rec

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

40

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

41

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

eNum

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

42

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
printf("name offset: %d\n" , _n - _r);

 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

eNum name

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

43

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);

printf("salary offset: %d\n" , _s - _r);
 return 0;
}

eNum name salary

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

• The members are laid out in order
but there may be added padding!

44

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

eNum name salary

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

• The members are laid out in order
but there may be added padding!

1. Start members at offsets that are
multiples of their alignment

45

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

eNum name salary

0 8 124 16 20 24

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

• The members are laid out in order
but there may be added padding!

1. Start members at offsets that are
multiples of their alignment

2. Size should be a multiple of the
size of the largest member

46

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
void *_e = &(r.eNum);
void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("eNum offset: %d\n" , _e - _r);
 printf("name offset: %d\n" , _n - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

>> ./a.out
Size: 24
eNum offset: 0
name offset: 8
salary offset: 16
>>

eNum name salary

0 8 124 16 20 24

Structures (structs)

• When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents
• You can get the size of the memory associated to

a struct using sizeof … but this might be larger
than the sum of its parts

• The members are laid out in order
but there may be added padding!

1. Start members at offsets that are
multiples of their alignment

2. Size should be a multiple of the
size of the largest member

47

#include <stdio.h>
struct Rec
{
 const char * name;
 unsigned int eNum;
 float salary;
};
int main(void)
{
 struct Rec r;

void *_r = &r;
 void *_n = &(r.name);
void *_e = &(r.eNum);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec));

 printf("name offset: %d\n" , _n - _r);
 printf("eNum offset: %d\n" , _e - _r);
 printf("salary offset: %d\n" , _s - _r);
 return 0;
}

>> ./a.out
Size: 16
name offset: 0
eNum offset: 8
salary offset: 12
>>

eNumname salary

0 8 124 16 20 24

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions

48

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
struct Rec Increase(struct Rec r , float s)
{
 r.salary += s;
 return r;
}
int main(void)
{
 struct Rec boss = { 1 , "misha" , 0.f };
 printf("%g\t" , boss.salary);
 boss = Increase(boss , 1e6f);
 printf("%g\n" , boss.salary);
 return 0;
} >> ./a.out

0 1e+06
>>

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions
• On return, the entire struct

(i.e. all its contents) is copied
from the stack-frame of the
called function to the stack-
frame of the calling function

49

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
struct Rec Increase(struct Rec r , float s)
{
 r.salary += s;
 return r;
}
int main(void)
{
 struct Rec boss = { 1 , "misha" , 0.f };
 printf("%g\t" , boss.salary);

boss = Increase(boss , 1e6f);
 printf("%g\n" , boss.salary);
 return 0;
} >> ./a.out

0 1e+06
>>

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions
• Arguments are passed by value so

the function sees a copy of the
data in the struct

50

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
void Increase(struct Rec r , float s)
{
 r.salary += s;
}
int main(void)
{
 struct Rec boss = { 1 , "misha" , 0.f };
 printf("%g\t" , boss.salary);
 Increase(boss , 1e6f);
 printf("%g\n" , boss.salary);
 return 0;
} >> ./a.out

0 0
>>

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions
• If you want to access the original

data (or the struct is large and
you don't want to duplicate it)
you can pass a pointer
• You can dereference the pointer and

use the "." operator to access the
member data

51

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
void Increase(struct Rec * r , float s)
{

(*r).salary += s;
}
int main(void)
{
 struct Rec boss = { 1 , "misha" , 0.f };
 printf("%g\t" , boss.salary);
 Increase(&boss , 1e6f);
 printf("%g\n" , boss.salary);
 return 0;
} >> ./a.out

0 1e+06
>>

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions
• If you want to access the original

data (or the struct is large and
you don't want to duplicate it)
you can pass a pointer
• You can dereference the pointer and

use the "." operator to access the
member data

• Or you can use the "->" operator to
access the member data directly from
the pointer

52

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
void Increase(struct Rec * r , float s)
{

r->salary += s;
}
int main(void)
{
 struct Rec boss = { 1 , "misha" , 0.f };
 printf("%g\t" , boss.salary);
 Increase(&boss , 1e6f);
 printf("%g\n" , boss.salary);
 return 0;
} >> ./a.out

0 1e+06
>>

Structures (structs)

• structs can be assigned values
and copied, and/or passed into
or returned from functions
• If a struct contains an array, the

values are stored as part of the
struct
⇒ If a function returns the struct,

the values are copied to the calling
function

⇒Wrapping arrays within a struct,
we can have functions that
effectively return arrays.

53

#include <stdio.h>
struct FourInts
{
 int ints[4];
};
struct FourInts Init(void)
{
 struct FourInts fourInts;
 for(int i=0 ; i<4 ; i++) fourInts.ints[i] = i;
 return fourInts;
}
int main(void)
{
 struct FourInts fi = Init();
 for(int i=0 ; i<4 ; i++)
 printf(“%d] %d\n” , i , fi.ints[i]);
 return 0;
} >> ./a.out

0] 0
1] 1
2] 2
3] 3
>>

Structures (structs)

• You can nest structs
• Since both "." and "->" associate left-to-right,

the employee number of the lead is:
(mgmt.lead).eNum
(t->lead).eNum
mgmt.lead.eNum
t->lead.eNum

54

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
struct TeamRec
{
 struct Rec lead;
 struct Rec e1 , e2;
};
int main(void)
{
 …
 struct TeamRec mgmt;
 mgmt.lead = boss;
 mgmt.lead.salary *=2;
 TeamRec *t = &mgmt;
 …
}

Structures (structs)

• You can nest structs

• You can create arrays of structs
• Statically, on the stack

55

#include <stdio.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{

struct Rec staff[10];
 for(int i=0 ; i<10 ; i++)
 {
 staff[i].eNum = i;
 …
 }
 return 0;
}

Structures (structs)

• You can nest structs

• You can create arrays of structs
• Statically, on the stack

• Or dynamically on the heap

56

#include <stdio.h>
#include <stdlib.h>
struct Rec
{
 unsigned int eNum;
 const char * name;
 float salary;
};
int main(void)
{
 struct Rec *staff;

staff = malloc(sizeof(struct Rec)*10);
 for(int i=0 ; i<10 ; i++)
 {
 staff[i].eNum = i;
 …
 }
 free(staff);
 return 0;
}

Structures (structs)

• You can nest structs

• You can create arrays of structs
• Statically, on the stack

• Or dynamically on the heap

• You can declare a struct inside of
a struct

57

#include <stdio.h>
#include <stdlib.h>
struct Pixel
{
 struct
 {
 unsigned char r , g , b;
 } color;
 struct
 {
 int x , y;
 } position;
};
int main(void)
{
 struct Pixel p;
 p.color.r = p.color.g = p.color.b = 255;
 p.position.x = p.position.y = 0;
 …
 return 0;
}

Structures (structs)

• You can nest structs

• You can create arrays of structs
• Statically, on the stack

• Or dynamically on the heap

• You can declare a struct inside of
a struct
• Note that these lines simultaneously:

• Define an (unnamed) struct with three
unsigned chars, and

• Declare a member color of that type.

58

#include <stdio.h>
#include <stdlib.h>
struct Pixel
{

struct
{

 unsigned char r , g , b;
} color;

 struct
 {
 int x , y;
 } position;
};
int main(void)
{
 struct Pixel p;
 p.color.r = p.color.g = p.color.b = 255;
 p.position.x = p.position.y = 0;
 …
 return 0;
}

Outline

• Exercise 12

• Lifetime and scope

• structs

• typedef

• Review questions

59

typedef

• Declaring / passing a struct requires
adding the struct keyword

60

#include <stdio.h>
struct Rec
{
 unsigned int emplNum;
 const char * name;
 float salary;
};
void PrintRec(struct Rec r)
{
 printf("Number: %d\n" , r.emplNum);
 printf("Name: %s\n" , r.name);
 printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{

struct Rec boss = { 1 , "misha" , 0.f };
 PrintRec(boss);
 return 0;
}

>> ./a.out
Number: 1
Name: misha
Salary: 0.00
>>

typedef

• Declaring / passing a struct requires
adding the struct keyword

• We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

61

#include <stdio.h>
struct _Rec
{
 unsigned int emplNum;
 const char * name;
 float salary;
};
typedef struct _Rec Rec;
void PrintRec(Rec r)
{
 printf("Number: %d\n" , r.emplNum);
 printf("Name: %s\n" , r.name);
 printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{
 Rec boss = { 1 , "misha" , 0.f };
 PrintRec(boss);
 return 0;
}

typedef

• Declaring / passing a struct requires
adding the struct keyword

• We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

• We can even apply it to the
definition of the struct

62

#include <stdio.h>
typedef struct _Rec
{
 unsigned int emplNum;
 const char * name;
 float salary;
} Rec;

void PrintRec(Rec r)
{
 printf("Number: %d\n" , r.emplNum);
 printf("Name: %s\n" , r.name);
 printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{
 Rec boss = { 1 , "misha" , 0.f };
 PrintRec(boss);
 return 0;
}

typedef

• Declaring / passing a struct requires
adding the struct keyword

• We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

• We can even apply it to the
definition of the struct

• We can even omit the actual
struct name altogether*

63

#include <stdio.h>
typedef struct
{
 unsigned int emplNum;
 const char * name;
 float salary;
} Rec;

void PrintRec(Rec r)
{
 printf("Number: %d\n" , r.emplNum);
 printf("Name: %s\n" , r.name);
 printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{
 Rec boss = { 1 , "misha" , 0.f };
 PrintRec(boss);
 return 0;
}

*This is OK unless we need to know the struct’s name within the struct.

Outline

• Exercise 12

• Lifetime and scope

• structs

• typedef

• Review questions

64

Review questions

1. What is a struct in c?

A user defined type which is a collection of variables (often
heterogeneously-typed) that are bundled together as a unit under a
single name

65

Review questions

2. How are the fields of a struct passed into a function – by value or
by reference?

By value

66

Review questions

3. What is the size of a struct? What is structure padding in C?

The size of a struct is at least the number of bytes needed to store the
data. It may be padded either to align the members or to ensure that
the total size is a multiple of the largest member’s size.

67

Review questions

4. What is the difference between lifetime and scope of a variable?

Lifetime describes how long the variable resides in memory.

Scope describes when it is accessible.

68

Review questions

5. What is variable shadowing (i.e. hiding)?

When a variable goes out of scope because another variable with the
same name is brought into scope.

69

Review questions

6. What is the output of this program?

0; 3; 5; 2;

(Recall that global variables are initialized
to zero.)

70

#include <stdio.h>
int foo;
void bar(void)
{
 int foo = 3;
 {
 extern int foo;
 printf("%d; “ , foo);
 foo = 2;
 }
 printf("%d; ", foo);
}
void baz(void) { printf("%d; “ , foo); }
int main(void)
{
 {
 int foo = 5;
 bar();
 printf("%d; “ , foo);
 }
 baz();
 return 0;
}

Exercise 13

• Website -> Course Materials -> Exercise 13

71

	Slide 1: Intermediate Programming Day 13
	Slide 2: Outline
	Slide 3: Exercise 12
	Slide 4: Exercise 12
	Slide 5: Exercise 12
	Slide 6: Exercise 12
	Slide 7: Exercise 12
	Slide 8: Exercise 12
	Slide 9: Exercise 12
	Slide 10: Exercise 12
	Slide 11: Exercise 12
	Slide 12: Exercise 12
	Slide 13: Exercise 12
	Slide 14: Outline
	Slide 15: Variable lifetime and scope
	Slide 16: Variable lifetime and scope
	Slide 17: Variable lifetime and scope
	Slide 18: Variable lifetime and scope
	Slide 19: Variable lifetime and scope
	Slide 20: Variable lifetime and scope
	Slide 21: Variable lifetime and scope
	Slide 22: Variable lifetime and scope
	Slide 23: Variable lifetime and scope
	Slide 24: Variable lifetime and scope
	Slide 25: Variable lifetime and scope
	Slide 26: Variable lifetime and scope
	Slide 27: Beware the global variable
	Slide 28: Outline
	Slide 29: Structures (structs)
	Slide 30: Structures (structs)
	Slide 31: Structures (structs)
	Slide 32: Structures (structs)
	Slide 33: Structures (structs)
	Slide 34: Structures (structs)
	Slide 35: Structures (structs)
	Slide 36: Structures (structs)
	Slide 37: Structures (structs)
	Slide 38: Structures (structs)
	Slide 39: Structures (structs)
	Slide 40: Structures (structs)
	Slide 41: Structures (structs)
	Slide 42: Structures (structs)
	Slide 43: Structures (structs)
	Slide 44: Structures (structs)
	Slide 45: Structures (structs)
	Slide 46: Structures (structs)
	Slide 47: Structures (structs)
	Slide 48: Structures (structs)
	Slide 49: Structures (structs)
	Slide 50: Structures (structs)
	Slide 51: Structures (structs)
	Slide 52: Structures (structs)
	Slide 53: Structures (structs)
	Slide 54: Structures (structs)
	Slide 55: Structures (structs)
	Slide 56: Structures (structs)
	Slide 57: Structures (structs)
	Slide 58: Structures (structs)
	Slide 59: Outline
	Slide 60: typedef
	Slide 61: typedef
	Slide 62: typedef
	Slide 63: typedef
	Slide 64: Outline
	Slide 65: Review questions
	Slide 66: Review questions
	Slide 67: Review questions
	Slide 68: Review questions
	Slide 69: Review questions
	Slide 70: Review questions
	Slide 71: Exercise 13

