Intermediate Programming
Day 13

Outline

* Exercise 12

* Lifetime and scope
* structs

* typedef

* Review questions

bsearch.c

int *search(int *start , int *end , int s_val);

Exercise 12

int main(void) {

}

int *search(int *start , int *end , int s_val)

{

Declare and define search.

if(start==end) return NULL;

int *mid = start + (end-start)/2;

if(*mid==s_val) return mid;

else if(*mid<s_val) return search(mid+1 , end , s_val);
else return search(start , mid , s_val);

Exercise 12

Compute the index of the
matching element

bsearch.c
m‘r *search(int *start , int *end , int s_val);
int main(void) {
int arrl[] = {11, 119, 318, 518, 573, 750, 757, 809, 813, 994 }.

// example of a successful search
pos = search(arrl, arrl + 10, 809);
assert(pos != NULL);

assert(*pos == 809);

index = pos - arrl;

assert(7 == index);

}

int *search(int *start , int *end , int s_val)
{
if(start==end) return NULL;
int *mid = start + (end-start)/2;
if(*mid==s_val) return mid;
else if(*mid<s_val) return search(mid+1 , end , s_val);
else return search(start , mid , s_val);

Exercise 12

Declare the unit array.

sudokuHelper.c

int *makeCol(int *table) {
// TODO: declare the unit variable (array of 9 integers, to be returned)
int *unit = malloc(sizeof(int) * SIZE).
if(lunit)
{
fprintf(stderr , "[ERROR] Failed to allocate unit\n"):
return NULL:

}

int *makeCube(int *table) {
// TODO: declare the unit variable (array of 9 integers, to be returned)

int *unit = malloc(sizeof(int) * SIZE).

if(lunit)

{
fprintf(stderr , "[ERROR] Failed to allocate unit\n"):
return NULL;

sudokuHelper.c

int checkRows(int table[][STZE]) {

Exercise 12 int good = 0;

for (int r = 0; r < SIZE; r++) {

// TODO: call check on current row and add to variable good

good += check(table[r]):

}
Ca” ChZCk on current row return (good==SIZE);

and add to variable good |}

Exercise 12

Call makeCol/makeCube
onh current column/cube
and assign result to
variable column/cube

sudokuHelper.c

int checkCols(int table[]J[SIZE]) {

int good = O;

int *column;

for(int c=0; c<SIZE ; c++){
// TODO: call makeCol on current column and assign result to variable column
column = makeCol(table[0]+c):
good += check(column);

}

return (good==SIZE);

}

int checkCubes(int table[J[SIZE]) {

int good = O;

int *cube;

for(int r=0 ; <SIZE ; r+=3)

for(int ¢c=0; c<SIZE ; c+=3){

// TODO: call makeCube on current cube and assign result to variable cube
cube = makeCube(table[r]+c);
good += check(cube);

}
return (good == SIZE);

Exercise 12

Find and fix the
memory leaks

>> valgrind

==3710153==
==3710153==
==3710153==
==3710153==
==3710153==
==3710153==
==3710153==
==3710153==
==3710153==

--leak-check=full --show-leak-kinds=all ./main puzzlel.txt

HEAP SUMMARY :
in use at exit: 1,120 bytes in 19 blocks
total heap usage: 21 allocs, 2 frees, 10,336 bytes allocated

324 bytes in 9 blocks are definitely lost in loss record 1 of 3
at 0x484186F: malloc (vg replace malloc.c:381)
by 0x4013F9: makeCol (sudokuHelpers.c:22)
by 0x4015A7: checkCols (sudokuHelpers.c:85)
by 0x401317: main (in /home/misha/CS220/exercises/ex12/main)

sudokuHelper.c
21. int* makeCol(int *table) {
. 22. int *unit = malloc(sizeof(int) * SIZE),
Exercise 12 5 o
24. {
25. fprintf(stderr , "[ERROR] Failed to allocate unit\n");
26. return NULL;
. . 27. }
Find and fix the . |
81. int checkCols(int table[][SIZE]) {
memory leaks 82. int good = 0;
83. int * column;
84. for(int ¢c=0 ; c<SIZE ; c++){
85. column = makeCol(table[0]+c);
86. good += check(column);
87. }
88. return (good==SIZE);
89. }

>> valgrind --leak-check=full ——show—leak—kiﬁ;>—dll ./ MaIlT puUZZI€I.TXT

==3710153== HEAP SUMMARY:

==3710153== in use at exit: 1,120 bytes in 19 blocks

==3710153== total heap usage: 21 allocs, 2 frees, 10,336 bytes allocated

==3710153==

==3710153== 324 bytes in 9 blocks are definitely lost in loss record 1 of 3
==3710153== at 0x484186F: malloc (vg replace malloc.c:381)

==3710153== by 0x4013F9: makeCol (sudokuHelpers.c:22)

==3710153== by 0x4015A7: checkCols (sudokuHelpers.c:85)

==3710153== by 0x401317: main (in /home/misha/CS220/exercises/ex12/main)

Exercise 12

Find and fix the
memory leaks

21.
22.
23.
24.
25.
26.
27.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
o1
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

sudokuHelper.c

int* makeCol(int *table) {
int *unit = malloc(sizeof(int) * SIZE),
if(lunit)
{
fprintf(stderr , "[ERROR] Failed to allocate unit\n");
return NULL;

}

int checkCols(int table[][SIZE]) {
int good = O;
int * column;
for(int c=0; c<SIZE ; c++){
column = makeCol(table[0]+c);
good += check(column);
free(column);
}
return (good==SIZE);
}
int checkCubes(int table[J[SIZE]) {
int good = O;
int * cube;
for (int r=0; r < SIZE; r += 3)
for (int ¢ = 0; ¢ < SIZE; c += 3){
cube = makeCube(table[r]+c);
good += check(cube);
free(cube);
}
return (good==SIZE);
}

10

sudokuHelper.c

21, int* makeCol(int *table) {

. 22. int *unit = malloc(sizeof(int) * SIZE),
Exercise 12 S o
24, {
25. fprintf(stderr , "[ERROR] Failed to allocate unit\n");
26. return NULL;
27. }

Find and fix the

81. int checkCols(int table[[SIZE]){

memory leaks 82. int good = O;
83. int * column;
84. for(int c=0; c<SIZE ; c++){
85. column = makeCol(table[0]+c);
86. good += check(column);

87. free(column):
>> valgrind --leak-check=full --show-leak-kinds=all ./main puzzlel.txt

==3923831== HEAP SUMMARY:

==3923831== in use at exit: 472 bytes in 1 blocks

==3923831== total heap usage: 21 allocs, 20 frees, 10,336 bytes allocated
==3923831==

==3923831== 472 bytes in 1 blocks are still reachable in loss record 1 of 1
==3923831== at 0x484186F: malloc (vg replace malloc.c:381)

==3923831== by 0x48FA46E: _ fopen_internal (iofopen.c:65)

==3923831== by 0x4011E9: main (sudoku.c:11)

==3923831==

==3923831== LEAK SUMMARY:

sudoku.c
5 int main(int argc, char * argv[]) {
. 6.

Exercise 12 7 i arge<d)
8. fprintf(stderr, "invalid program call\n");
9. return 1; // incorrect program usage
10. }

. . 11. FILE* infile = fopen(argv[1], "r");
Find and fix the |
Read the board from the file

memory leaks |
28. if (checkRows(puzzle) && checkCols(puzzle) && checkCubes(puzzle))
29. printf("puzzle is correctly solved\n");
30. else
31. printf("puzzle is not [correctly] solved\n");
32. return O;

>> valgrind --leak-check=full --show-leak-ki

==3923831== HEAP SUMMARY:

==3923831== in use at exit: 472 bytes in 1 blocks

==3923831== total heap usage: 21 allocs, 20 frees, 10,336 bytes allocated
==3923831==

==3923831== 472 bytes in 1 blocks are still reachable in loss record 1 of 1

==3923831== at 0x484186F: malloc (vg replace malloc.c:381)
==3923831== by 0x48FA46E: _ fopen_internal (iofopen.c:65)
==3923831== by 0x4011E9: main (sudoku.c:11)

==3923831==

==3923831== LEAK SUMMARY':

sudoku.c
5 int main(int argc, char * argv[]) {
. 6.
Exercise 12 I i)
8. fprintf(stderr, "invalid program call\n");
9. return 1; // incorrect program usage
10. }
. . 11. FILE* infile = fopen(argv[1], "r");
Find and fix the .
Read the board from the file
memory leaks |
28. if (checkRows(puzzle) && checkCols(puzzle) && checkCubes(puzzle))
29. printf("puzzle is correctly solved\n");
30. else
31. printf("puzzle is not [correctly] solved\n");
32. fclose(infile);
>> valgrind --leak-check=full --show-leak-ki| 33. } return O;
34,
==3720658== HEAP SUMMARY:
==3720658== in use at exit: © bytes in @ blocks
==3720658== total heap usage: 21 allocs, 21 frees, 10,336 bytes allocated

==3720658==
==3720658==

All heap blocks were freed -- no leaks are possible

13

Outline

* Exercise 12

* Lifetime and scope
* structs

* typedef

* Review questions

14

Variable lifetime and scope

 Variables declared in C programs have:

e lifetime: How long is the variable in memory?

* Both f and i have a lifetime equal to the duration of the main function
(They come into existence when main’s stack frame is created and disappear when it’s gone)

* scope: Where is the variable name accessible?
* fisin scope from the point it is declared to the end of the main function (lines 4-7)

* iisin scope for the for loop (lines 5-6) #include <stdio.h>
int main(void)
(main stack frame { int f= 1:
L Ld for(lint i¥2 ; i<6 ; i++)
f_ f*=1i;
printf("%d\n" , f);
}

Variable lifetime and scope

Q: What are the lifetimes of the variables i?
A: Both have a lifetime equal to the duration of the main function

Q: What are the scopes of the variables i?

A: The first comes into scope when it is declared, is shadowed / hidden during the
for loop, and re-emerges after (lines 4, 7)

The second is in scope during the #incluc.ie <5’(di0.h>
for loop (lines 5-6) in’r main(void)
(main stack frame int i.f=1:
L LEd for(lint i¥2 ; i<6 ; i++)
f i i f =i
printf("%d\n" , f):
}

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

#include <stdio.h>
void foo(int i)

{
static int count;
printf("%d] foo(%d)\n" , count++ , i);
}
int main(void)
{
foo(1);
foo(7);
return O;

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed / | #include <stdio h>
hidden by an inner variable with | yoid foo(int i)
the same name and are declared {
at the beginning) static int count;
* But... prefixing the variable printf("%d] foo(%d)\n" , count++ , i);
declaration with the static }
keyword, extends the lifetime int main(void)
across all calls to that function {
* The variable is automatically foo(1):
initialized to have zero value : >> ./a.out
foo(7). 0] fo§<°§)
return O; 1] foo(7)
} >>

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed / | #include <stdio h>
hidden by an inner variable with | yoid foo(int i)
the same name and are declared {
at the beginning) static int count=5;
* But... prefixing the variable orintf(“%d] foo(%d J\n" , count++ , i);
declaration with the static }
keyword, extends the lifetime int main(void)
across all calls to that function {
* The variable is automatically foo(1) :
initialized to have zero value : >> ./a.out
y _ foo(7); o] Fool 1)
 If you declare and assign, the return O: 6] foo(7)
assignment only happens the first } ‘ o>
time the function is called.

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* In general, local variables have lifetime / scope equal to the function’s duration

(assuming they aren’t shadowed /
hidden by an inner variable with
the same name and are declared
at the beginning)

e But... prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function

e But the variable is still only
scoped within the function

#include <stdio.h>
void foo(int i)

{ static int count=b;

printf("%d] foo(%d)\n" , count++ , i);
?n‘r main(void)
{ fop(1),'“o)

return O; | |

Variable lifetime and scope

Note:

* Variab| gecause a static variable’s lifespan extends beyond
* In&{the function call, it does not reside on the stack.

(ass

higd (static variables are stored in the data segment.)

'’s duration

the same name and are declared
at the beginning)

e But... prefixing the variable
declaration with the static
keyword, extends the lifetime
across all calls to that function

e But the variable is still only
scoped within the function

VTN ."\ vy V4

{ static int count=b;

printf("%d] foo(%d)\n" , count++ , i);
?n‘r main(void)
{ fop(1),'“o)

return O; | |

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* We can also define global variables outside of any function

* They have a lifetime equal to the #include <stdio.h>
lifetime of the program int count:
* They are initialized to zero void fOO(int i)
* They are accessible to any function {

following the declaration

printf("%d] foo(%d)\n" , count++ , i);

}

int main(void)

{
foo(1);
printf(“%d\n" , count); [./2out
return O; 1

} >>

Variable lifetime and scope

* Variables declared in C programs have lifetime and scope
* We can also define global variables outside of any function

* They have a lifetime equal to the #include <stdio.h>
lifetime of the program int count:
* They are initialized to zero void fOO(,inT i)
* They are accessible to any function {
following the declaration) W " .
6 printf("%d] foo(%d)\n" , count++ , i);
]

Note: main(void)
Like static variables, global variables

do not reside on the stack. fg%fé()ino/d\n" count) T
: | o , ; -/a.
(They too are stored in the data segment.) ﬁemm 0: g] foo(1)

} >>

Variable lifetime and sCoow

Global variables:

* Like functions, you can define
global variables in one source file
and use them in another.

* At compile time, the compiler only
needs to know the declaration, not
the definition.

* At link time, the linker will bind
the declared variables to their
definitions.

int count = 3;
foo.c

#include <stdio.h>

void incrementCount(int i)

{

extern int count;

count += i;

}

int main(void)

{
extern int count;
incrementCount(5);
printf("%d\n" , count);
return O;

}

main.c

24

Variable lifetime and sCoow

Global variables:

* Like functions, you can define
global variables in one source file
and use them in another.

* At compile time, the compiler only
needs to know the declaration, not
the definition.

* At link time, the linker will bind
the declared variables to their
definitions.

* The extern keyword can be used
to declare global variables that are
defined elsewhere (either in the
same file or in other files).

int count = 3;

foo.c

#include <stdio.h>

void incrementCount(int i)

>> gcc main.c foo.c ...
./a.out

>>
8
>>

{
extern int count;
count += i;

}

int main(void)

{
extern int count;
incrementCount(5);
printf(“"%d\n" , count),
return O;

}

main.c

25

int count = 3;

Variable lifetime and sCowc
#include <stdio.h>
extern int count;

foo.c

You can also declare the variable

outside of a function call so that all | |Void incrementCount(iint i)

. {
(subsequent) functions calls have i
access to it. } >> gcc main.c foo.c ...
: : i I + : d >> ./a.out
needs to know the declaration, not | int main(void) 8

>>

the definition. {

* At link time, the linker will bind
the declared variables to their
definitions.

* The extern keyword can be used
to declare global variables that are
defined elsewhere (either in the
same file or in other files). %

incrementCount(5);
printf("%d\n" , count);
return O;

main.c

Beware the global variable

Usage of global variables is generally discouraged

x Debugging is harder — less clear which function changed a global variable’s value
(since it could be any!)

x Global variables cross boundaries between program modules, undoing benefits of
modular code
* readability
* testability

x In general, values should be conveyed via parameter passing and return values

v'Boolean global variables could be useful for debugging if you only want to printf
within one function based on a condition being met in a different function.

Outline

* Exercise 12

* Lifetime and scope
* structs

* typedef

* Review questions

28

Structures (structs)

* If we have an application that stores students' ages and grades, we
can represent a student's data by an array of float values. (E.g. by
storing the data for N students in a float array of size 2N.)

Q: What if we want to store other (non-numerical) data like names?

A: A structure is a collection of variables (often heterogeneously-typed)
that are bundled together as a unit under a single name

Structures (structs)

e Use the struct keyword to define a new type

struct Rec

{
unsigned int eNum;
const char * name;
float salary;

};

30

Structures (structs)

e Use the struct keyword to define a new type
* It has a (type) name

struct Rec

{
unsigned int eNum;
const char * name;
float salary;

};

31

Structures (structs)

e Use the struct keyword to define a new type
* It has a (type) name
* And a list of variables (members)

struct Rec

{
unsigned int eNum;
const char * name;
float salary;

};

32

Structures (structs)

e Use the struct keyword to define a new type
* It has a (type) name
* And a list of variables (members)

* Variables of the type are declared using the fm'd Rec

struct keyword and the struct (type) name unsigned int eNum;

const char * name;
float salary;

};

struct Rec boss;
struct Rec assistant;

Structures (structs)

e Use the struct keyword to define a new type
* It has a (type) name
* And a list of variables (members)

* Variables of the type are declared using the
struct keyword and the struct (type) name

e Can initialize members using array syntax
e Variable order must match declaration order

boss={1, "misha" , O0.f };

struct Rec

{

unsigned int eNum;
const char * name;

float salary;

};

struct Rec boss;
struct Rec assistant;

34

Structures (structs)

e Use the struct keyword to define a new type
* It has a (type) name
* And a list of variables (members)

* Variables of the type are declared using the
struct keyword and the struct (type) name
e Can initialize members using array syntax
* Or member-by-member, using the "."

" operator
boss={1, "misha" , O0.f };

boss.eNum = 1;
boss.name = "misha";
boss.salary = O.f;

struct Rec

{

unsigned int eNum;
const char * name;

float salary;

};

struct Rec boss;
struct Rec assistant;

35

#include <stdio.h>
struct Rec
{
Structures (structs) unsigned int eNum;
const char * name;
_ , float salary:;
 When the compiler sees a struct type it):
creates enough memory on the stack to int main(void)
store all of its contents {
struct Rec rec;
;:e‘rurn 0;
}
struct Rec

address space

Structures (structs)

 When the compiler sees a struct type it
creates enough memory on the stack to
store all of its contents

* You can get the size of the memory associated to
a struct using sizeof ...

#include <stdio.h>
struct Rec

{

unsigned int eNum;
const char * name;

float salary:;
%
int main(void)
{
struct Rec rec;
printf("Size: %d\n",
(int)sizeof(rec));
return O;
}

struct Rec

address space

#include <stdio.h>
struct Rec
{
Structures (structs) unsigned int eNum;
const char * name;
, , float salary:;
 When the compiler sees a struct type it):
creates enough memory on the stack to int main(void)
store all of its contents {
_ , struct Rec rec;
* You can get the size of the memory associated to printf("Size: %d\n"
a struct using sizeof ... but this might be larger (int)sizeof(rec)).
than the sum of its parts return O:
} >> ./a.out
Size: 24
>>
struct Rec

address space

#include <stdio.h>
struct Rec

Structures (structs) {

unsigned int eNum;
const char * name;

. float salary:;
* When the compiler sees a struct typ(y.

creates enough memory on the stack |int main(void)

store all of its contents {
_ printf("%d + " , sizeof(unsigned int));
* You can get the size of the memory asso« printf("%d + " , sizeof(const char*));

a struct using sizeof ... but this might be printf("%d = " sizeof(float));

than the sum of its parts printf("%d\n" , sizeof(struct Rec));
return O;

} >> ./a.out

4 + 8 + 4 = 24
>>

struct Rec

address space

#include <stdio.h>
struct Rec

Structures (structs) |

unsigned int eNum;
const char * name;

. ﬂOClT SG'GI"Y; >> _/a.out
* When the compiler sees a struct |3. Size: 24
creates enough memory on the stg int main(void) eNum offset: ©
. { name offset: 8
store all of its contents salary offset: 16
struct Rec r; 55

* You can get the size of the memory 4 void * r = &r:
a struct using sizeof ... but this migh yoid * ¢ = &(r.eNum);
than the sum of its parts void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

#include <stdio.h>
struct Rec

Structures (structs) |

unsigned int eNum;
const char * name;

. ﬂOClT SG'GI"Y; >> _/a.out
* When the compiler sees a struct |3. Size: 24
creates enough memory on the stg int main(void) eNum offset: ©
. { name offset: 8
store all of its contents salary offset: 16
struct Rec r; 55

* You can get the size of the memory 4 void * r = &r:
a struct using sizeof ... but this migh yoid * ¢ = &(r.eNum);
than the sum of its parts void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" ,_e - _r);
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

0 4 8 12 16 20 24

#include <stdio.h>
struct Rec

Structures (structs) |

unsigned int eNum;
const char * name;

. ﬂOClT SG'GI"Y; >> _/a.out
* When the compiler sees a struct |3. Size: 24
creates enough memory on the stg int main(void) eNum offset: ©
. { name offset: 8
store all of its contents salary offset: 16
struct Rec r; 55

* You can get the size of the memory 4 void * r = &r:
a struct using sizeof ... but this migh yoid * ¢ = &(r.eNum);
than the sum of its parts void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

X N

#include <stdio.h>
struct Rec

Structures (structs) |

unsigned int eNum;
const char * name;

. ﬂOClT SG'GI"Y; >> _/a.out
* When the compiler sees a struct |3. Size: 24
creates enough memory on the stg int main(void) eNum offset: ©
. { name offset: 8
store all of its contents salary offset: 16
struct Rec r; >>

* You can get the size of the memory 4 void * r = &r:
a struct using sizeof ... but this migh yoid * ¢ = &(r.eNum);
than the sum of its parts void *_n = &(r.name);
void *_s = &(r.salary);
printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

I N T

0 4 8 12 16 20 24

#include <stdio.h>
struct Rec

Structures (structs) |

unsigned int eNum;
const char * name;

. ﬂOClT SGIGI"Y; >> _/a.out
* When the compiler sees a struct |3. Size: 24
creates enough memory on the stg int main(void) eNum offset: ©
. { name offset: 8
store all of its contents salary offset: 16
struct Rec r; 55

* You can get the size of the memory 3 void * r = &r:
a struct using sizeof ... but this migh yoid * e = &(r.eNum);

than the sum of its parts void *_n = &(r.name);
« The members are laid out in order void *_s = &(r.salary):
but there may be added padding! printf("Size: %d\n" , sizeof(struct Rec));

printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

0 4 8 12 16 20 24 44

Structures (structs)

* When the compiler sees a struct
creates enough memory on the stz
store all of its contents

* You can get the size of the memory 4

a struct using sizeof ... but this migh
than the sum of its parts

* The members are laid out in order
but there may be added padding!

1. Start members at offsets that are
multiples of their alignment

0 4 8 12 16

#include <stdio.h>
struct Rec

{

}:

int main(void)

{

) N A Y

unsigned int eNum;
const char * name;

float SG'GF‘Y,’ >> ./a.out

Size: 24
eNum offset: O

name offset: 8
salary offset: 16
>>

struct Rec r;
void *_r = &r;
void *_e = &(r.eNum);

void *_n = &(r.name);

void *_s = &(r.salary);

printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

20 24

Structures (structs)

* When the compiler sees a struct
creates enough memory on the stz
store all of its contents

* You can get the size of the memory 4
a struct using sizeof ... but this migh
than the sum of its parts

* The members are laid out in order
but there may be added padding!

1. Start members at offsets that are
multiples of their alignment

2. Size should be a multiple of the

size of the largest member

#include <stdio.h>
struct Rec

{

}:

int main(void)

{

e N A
0 4 8 12 16 20

unsigned int eNum;
const char * name;
float SG'GF‘Y,’ >> ./a.out

Size: 24
eNum offset: O

name offset: 8

salary offset: 16
struct Rec r; 5>

void *_r = &r;
void *_e = &(r.eNum);

void *_n = &(r.name);

void *_s = &(r.salary);

printf("Size: %d\n" , sizeof(struct Rec)):
printf("eNum offset: %d\n" , _e-_r):
printf("name offset: %d\n" ,_n-_r);
printf("salary offset: %d\n" , _s- _r):
return O;

24

#include <stdio.h>
struct Rec

Structures (structs) |

const char * name;
unsigned int eNum;

, float salary; 5> ./a.out
* When the compiler sees a struct |3, cize: 16
creates enough memory on the stg int main(void) name offset: ©
. { eNum offset: 8
store all of its contents salary offset: 12
struct Rec r; 55

* You can get the size of the memory 3 void * r = &r:
a struct using sizeof ... but this migh yoid * _n = &(r.name);

than the sum of its parts void *_e = &(r.eNum);
e The members are laid out in order void *_s =.&('"-°50|0"Y)5 |
but there may be added padding! printf("Size: %d\n" , sizeof(struct Rec)):
1. Start members at offsets that are printf("name offset: %d\n" , _n-_r).

multiples of their alignment pr‘ian(::eNum offset: Zod\n':' ,_e-_r).
2. Size should be a multiple of the printf("salary offset: %d\n", _s-_r)

size of the largest member return O;

0 4 8 12 16 20 24

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

#include <stdio.h>
struct Rec
{
unsigned int eNum;
const char * name;
float salary;
k
struct Rec Increase(struct Rec r , float s)

{

r.salary += s;
returnr;

}

int main(void)

{
struct Rec boss = {1, "misha" , 0.f };
printf("%g\t" , boss.salary);
boss = Increase(boss , 1e6f);
printf("%g\n" , boss.salary);
return O;

} >> ./a.out

(%) le+06
>>

48

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

* On return, the entire struct
(i.e. all its contents) is copied
from the stack-frame of the
called function to the stack-
frame of the calling function

#include <stdio.h>

struct Rec

{
unsigned int eNum;
const char * name;
float salary;

k

struct Rec Increase(struct Rec r , float s)

{

r.salary += s;
return r;

}

int main(void)

{

struct Rec boss = {1, "misha" , 0.f };
printf("%g\t" , boss.salary);

boss = Increase(boss , 1e6f);
printf("%g\n" , boss.salary);

return O;

} >> ./a.out

(%) le+06
>>

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

* Arguments are passed by value so

the function sees a copy of the
data in the struct

#include <stdio.h>

struct Rec

{
unsigned int eNum;
const char * name;
float salary;

k

void Increase(struct Rec r, float s)

{

r.salary += s;

}

int main(void)

{
struct Rec boss = {1, "misha" , 0.f };
printf("%g\t" , boss.salary);
Increase(boss , 1e6f);
printf("%g\n" , boss.salary);
return O;

} >> ./a.out

%) %)

>>

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

* If you want to access the original
data (or the struct is large and
you don't want to duplicate it)
you can pass a pointer

* You can dereference the pointer and

use the "." operator to access the
member data

#include <stdio.h>
struct Rec
{
unsigned int eNum;
const char * name;
float salary;
}
void Increase(struct Rec * r, float s)

{

(*r).salary += s;

}

int main(void)

{
struct Rec boss = {1, "misha" , 0.f };
printf("%g\t" , boss.salary);
Increase(&boss , 1e6f);
printf("%g\n" , boss.salary);
return O;

} >> ./a.out

0 le+06

>>

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

* If you want to access the original
data (or the struct is large and
you don't want to duplicate it)
you can pass a pointer

* You can dereference the pointer and
use the "." operator to access the

member data

* Oryou can use the "->" operator to
access the member data directly from
the pointer

#include <stdio.h>
struct Rec
{
unsigned int eNum;
const char * name;
float salary;
}
void Increase(struct Rec * r, float s)

{

r->salary += s;

}

int main(void)

{
struct Rec boss = {1, "misha" , 0.f };
printf("%g\t" , boss.salary);
Increase(&boss , 1e6f);
printf("%g\n" , boss.salary);
return O;

} >> ./a.out

0 le+06

>>

Structures (structs)

e structs can be assigned values
and copied, and/or passed into
or returned from functions

 If a struct contains an array, the

values are stored as part of the
struct

= If a function returns the struct,
the values are copied to the calling
function

= Wrapping arrays within a struct,
we can have functions that
effectively return arrays.

#include <stdio.h>
struct FourInts

{
int ints[4];
¥
struct FourInts Init(void)
{

struct FourInts fourInts;

for(int i=0 ; i<4 ; i++) fourInts.ints[i] = i;

return fourInts;
}
int main(void)
{

struct FourInts fi = Init();

for(int i=0; i<4 ; i++)

printf("%d] %d\n" , i, fi.ints[i]):
return O;

Structures (structs)

* You can nest structs

 Since both "." and "->" associate left-to-right,
the employee number of the lead is:

(mgmt.lead).eNum
(t->lead).eNum
mgmt.lead.eNum
t->lead.eNum

#include <stdio.h>

struct Rec

{
unsigned int eNum;
const char * name;
float salary:;

)

struct TeamRec

{
struct Rec lead;
struct Recel , e?2;

)

int main(void)

{

struct TeamRec mgmt;
mgmt.lead = boss;
mgmt.lead.salary *=2;
TeamRec *t = &mgmt;

o4

Structures (structs)

* You can nest structs

* You can create arrays of structs
* Statically, on the stack

#include <stdio.h>
struct Rec

{

};

unsigned int eNum;
const char * name;
float salary:;

int main(void)

{

struct Rec staff[10];
for(int i=0 ; i<10 ; i++)
{

staff[i]l.eNum = i;

}

return O;

55

Structures (structs)

* You can nest structs

* You can create arrays of structs
* Statically, on the stack
e Or dynamically on the heap

#include <stdio.h>
#include <stdlib.h>
struct Rec
{
unsigned int eNum;
const char * name;
float salary;
}:
int main(void)
{
struct Rec *staff;
staff = malloc(sizeof(struct Rec)*10);
for(int i=0; <10 ; i++)
{
staff[i].eNum = i;

}
free(staff);

return O;

56

Structures (structs)

* You can nest structs

* You can create arrays of structs
* Statically, on the stack
e Or dynamically on the heap

* You can declare a struct inside of
a struct

#include <stdio.h>
#include <stdlib.h>

struct Pixel
{
struct
{
unsigned charr, g, b;
} color;
struct
{
Int x ,y:
} position;
¥
int main(void)
{

struct Pixel p;
p.color.r = p.color.g = p.color.b = 255;
p.position.x = p.position.y = O;

return O;

o2/

Structures (structs)

* You can nest structs

* You can create arrays of structs
* Statically, on the stack
e Or dynamically on the heap

* You can declare a struct inside of
a struct

* Note that these lines simultaneously:

e Define an (unnamed) struct with three
unsigned chars, and

 Declare a member color of that type.

#include <stdio.h>
#include <stdlib.h>

struct Pixel

{

%

struct

{

unsigned charr , g, b;
} color;
struct

{
Int x ,y:
} position;

int main(void)

{

struct Pixel p;
p.color.r = p.color.g = p.color.b = 255;
p.position.x = p.position.y = O;

return O;

20

Outline

* Exercise 12

* Lifetime and scope
* structs

* typedef

* Review questions

59

typedef

* Declaring / passing a struct requires
adding the struct keyword

#include <stdio.h>
struct Rec

{

unsigned int empINum;
const char * name;

float salary:;
%
void PrintRec(struct Rec r)
{
printf("Number: %d\n" , r.emp/Num);
printf("Name: %s\n" , r.name);
printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{
struct Rec boss = {1, "misha" ,0.f };
PrintRec(boss);
return O;
>> ./a.out
} Number: 1

Name: misha
Salary: 0.00
>>

60

typedef

* Declaring / passing a struct requires
adding the struct keyword

* We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

#include <stdio.h>

struct _Rec

{
unsigned int empINum;
const char * name;
float salary:;

}:

typedef struct _Rec Rec;

void PrintRec(Rec r)

{
printf("Number: %d\n" , r.empINum);
printf("Name: %s\n" , r.name);
printf("Salary: %.2f\n" , r.salary);

}

int main(void)

{

Rec boss = {1, "misha", O.f };
PrintRec(boss);
return O;

typedef

* Declaring / passing a struct requires
adding the struct keyword

* We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

* We can even apply it to the
definition of the struct

#include <stdio.h>
typedef struct _Rec

{
unsigned int empINum;
const char * name;
float salary;
} Rec;
void PrintRec(Rec r)
{
printf("Number: %d\n" , r.empINum);
printf("Name: %s\n" , r.name);
printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{

Rec boss = {1, "misha", O.f };
PrintRec(boss);
return O;

typedef

* Declaring / passing a struct requires
adding the struct keyword

* We can use the typedef keyword to
define a new "type" that has the
keyword struct baked in:

typdef <type> <alias>;

* We can even apply it to the

definition of the struct

e We can even omit the actual
struct name altogether”

#include <stdio.h>
typedef struct

{
unsigned int empINum;
const char * name;
float salary;
} Rec;
void PrintRec(Rec r)
{
printf("Number: %d\n" , r.empINum);
printf("Name: %s\n" , r.name);
printf("Salary: %.2f\n" , r.salary);
}
int main(void)
{
Rec boss = {1, "misha", O.f };
PrintRec(boss);
return O;
}

*This is OK unless we need to know the struct’s name within the struct.

Outline

* Exercise 12

* Lifetime and scope
* structs

* typedef

* Review questions

64

Review questions

1. Whatisastructinc?

A user defined type which is a collection of variables (often
heterogeneously-typed) that are bundled together as a unit under a

single name

Review questions

2. How are the fields of a struct passed into a function — by value or
by reference?

By value

66

Review questions

3. What is the size of a struct? What is structure padding in C?
The size of a sTruct is at least the number of bytes needed to store the

data. It may be padded either to align the members or to ensure that
the total size is a multiple of the largest member’s size.

67

Review questions

4. What is the difference between lifetime and scope of a variable?

Lifetime describes how long the variable resides in memory.
Scope describes when it is accessible.

68

Review questions

5. What is variable shadowing (i.e. hiding)?

When a variable goes out of scope because another variable with the
same name is brought into scope.

69

Review questions

6. What is the output of this program?

9; 35 55 2;

(Recall that global variables are initialized

to zero.)

#include <stdio.h>

int foo;

void bar(void)

{
int foo = 3;
{

extern int foo;
printf("%d; " , foo):
foo = 2;
}
printf("%d; ", foo);
}
void baz(void) { printf("%d; " , foo). }
int main(void)

{
{
int foo = 5;
bar();
printf("%d; ", foo);
}
baz();
return O;

Exercise 13

e Website -> Course Materials -> Exercise 13

	Slide 1: Intermediate Programming Day 13
	Slide 2: Outline
	Slide 3: Exercise 12
	Slide 4: Exercise 12
	Slide 5: Exercise 12
	Slide 6: Exercise 12
	Slide 7: Exercise 12
	Slide 8: Exercise 12
	Slide 9: Exercise 12
	Slide 10: Exercise 12
	Slide 11: Exercise 12
	Slide 12: Exercise 12
	Slide 13: Exercise 12
	Slide 14: Outline
	Slide 15: Variable lifetime and scope
	Slide 16: Variable lifetime and scope
	Slide 17: Variable lifetime and scope
	Slide 18: Variable lifetime and scope
	Slide 19: Variable lifetime and scope
	Slide 20: Variable lifetime and scope
	Slide 21: Variable lifetime and scope
	Slide 22: Variable lifetime and scope
	Slide 23: Variable lifetime and scope
	Slide 24: Variable lifetime and scope
	Slide 25: Variable lifetime and scope
	Slide 26: Variable lifetime and scope
	Slide 27: Beware the global variable
	Slide 28: Outline
	Slide 29: Structures (structs)
	Slide 30: Structures (structs)
	Slide 31: Structures (structs)
	Slide 32: Structures (structs)
	Slide 33: Structures (structs)
	Slide 34: Structures (structs)
	Slide 35: Structures (structs)
	Slide 36: Structures (structs)
	Slide 37: Structures (structs)
	Slide 38: Structures (structs)
	Slide 39: Structures (structs)
	Slide 40: Structures (structs)
	Slide 41: Structures (structs)
	Slide 42: Structures (structs)
	Slide 43: Structures (structs)
	Slide 44: Structures (structs)
	Slide 45: Structures (structs)
	Slide 46: Structures (structs)
	Slide 47: Structures (structs)
	Slide 48: Structures (structs)
	Slide 49: Structures (structs)
	Slide 50: Structures (structs)
	Slide 51: Structures (structs)
	Slide 52: Structures (structs)
	Slide 53: Structures (structs)
	Slide 54: Structures (structs)
	Slide 55: Structures (structs)
	Slide 56: Structures (structs)
	Slide 57: Structures (structs)
	Slide 58: Structures (structs)
	Slide 59: Outline
	Slide 60: typedef
	Slide 61: typedef
	Slide 62: typedef
	Slide 63: typedef
	Slide 64: Outline
	Slide 65: Review questions
	Slide 66: Review questions
	Slide 67: Review questions
	Slide 68: Review questions
	Slide 69: Review questions
	Slide 70: Review questions
	Slide 71: Exercise 13

