
Intermediate Programming
Day 4

Outline

• Logical operators

• Control structures

• Assignment and increment/decrement

• Loops

• Review questions

Logical operators

Takes boolean value(s) (including integers acting as boolean values) and
returns a boolean value

• Unary:
! logical “not” !A is true iff A is false

• Binary:
&& logical “and” (A && B) is true iff both A and B are true

|| logical “or” (A || B) is true iff either or both A and B are true

Logical operators

Takes integer/floating-point value and returns a boolean value

• Equality operators:
== (A == B) is true iff A equals B*

!= (A != B) is true iff A does not equal B*

• Relational operators
> (A > B) is true iff A is greater than B
< (A < B) is true iff A is less than B
>= (A >= B) is true iff A is greater than or equal to B*

<= (A <= B) is true iff A is less than or equal to B*
*You should avoid using these to compare floating point values!

Outline

• Logical operators

• Control structures

• Assignment and increment/decrement

• Loops

• Review questions

Control structures

• The if statement evaluates a
boolean predicate and executes
the code in braces if the predicate
is true.

#include <stdio.h>
int main(void)
{
 int n = 12;
 if(n % 2 == 0)
 {
 printf(“E\n”);
 }
 return 0;
}

>> ./a.out
E
>>

Control structures

• The if statement evaluates a
boolean predicate and executes
the code in braces if the predicate
is true.

• It no braces are provided, the if
only affects the next command
(i.e. up to the next “;”).

Note: White-space / indentation has no effect on what the if applies to.

#include <stdio.h>
int main(void)
{
 int n = 12;
 if(n % 2 == 0)
 printf(“E\n”);
 return 0;
}

Control structures

• The if statement evaluates a
boolean predicate and executes
the code in braces if the predicate
is true.

• It no braces are provided, the if
only affects the next command
(i.e. up to the next “;”).

• Can even put on one line (if it’s readable).

Note: White-space / indentation has no effect on what the if applies to.

#include <stdio.h>
int main(void)
{
 int n = 12;
 if(n % 2 == 0) printf(“E\n”);
 return 0;
}

Control structures

• The if / else statement evaluates
a boolean predicate and follows the
if branch if the predicate is true
and the else branch otherwise.

#include <stdio.h>
int main(void)
{
 int n = 13;
 if(n % 2 == 0)
 {
 printf(“E\n”);
 }
 else
 {
 printf(“O\n”);
 }
 return 0;
} >> ./a.out

O
>>

Control structures

• The if / else statement evaluates
a boolean predicate and follows the
if branch if the predicate is true
and the else branch otherwise.

• If no braces are provided, the if /
else only effect the next command
(i.e. up to the next “;”).

#include <stdio.h>
int main(void)
{
 int n = 13;
 if(n % 2 == 0) printf(“E\n”);
 else printf(“O\n”);
 return 0;
}

Control structures

• The if / else statement evaluates
a boolean predicate and follows the
if branch if the predicate is true
and the else branch otherwise.

• If no braces are provided, the if /
else only effect the next command
(i.e. up to the next “;”).

• The else is always associated to
the last (unmatched) if.

#include <stdio.h>
int main(void)
{
 int n = 13;
 if(n % 2 == 0)
 if(n==8) printf(“8\n”);
 else printf(“O\n”);
 return 0;
}

>> ./a.out
>>

Control structures

• The if / else statement evaluates
a boolean predicate and follows the
if branch if the predicate is true
and the else branch otherwise.

• If no braces are provided, the if /
else only effect the next command
(i.e. up to the next “;”).

• The else is always associated to
the last (unmatched) if.

#include <stdio.h>
int main(void)
{
 int n = 13;
 if(n % 2 == 0)
 {
 if(n==8) printf(“8\n”);
 }
 else printf(“O\n”);
 return 0;
}

>> ./a.out
O
>>

Control structures

• The if / else if / else statement
evaluates a sequence of boolean
predicates, and executes the code
for the first predicate that is true.

#include <stdio.h>
int main(void)
{
 int x = 79;
 if (x >= 90) printf("A\n“);
 else if(x >= 80) printf("B\n“);
 else if(x >= 70) printf("C\n“);
 else if(x >= 60) printf("D\n“);
 else printf("F\n“);
 return 0;
}

>> ./a.out
C
>>

Control structures

• The switch statement
tests if a value matches
one of a set of prescribed
cases and executes all the
code after if it does.
• switch:

Specifies the value to be tested

• case:
specifies the case to execute

• break:
do not continue to the next case

• default:
if nothing else matched...

#include <stdio.h>
int main(void)
{
 char grade = 'C';
 int points = 0;
 switch(grade)
 {
 case 'A':
 points = 4;
 break;
 case 'B':
 points = 3;
 break;
 case 'C':
 points = 2;
 break;
 case 'D':
 points = 1;
 break;
 default:
 points = 0;
 break;
 }

printf("Grade %c -> %d GPA points\n", grade, points);
} >> ./a.out

Grade C -> 2 GPA points
>>

Control structures

Short-circuiting:
• When C evaluates the composition of logical expression. . .*

if((statement_1) || (statement_2))

if((statement_1) && (statement_2))
. . . it short circuits as soon as answer is definitely true or definitely false.

• if(a == 7 || b == 7):
When (a==7) is true, the entire expression is true so we don’t need to test if (b == 7) is true.

• if(a == 7 && b == 7):
When (a==7) is false, the entire expression is false so we don’t need to test if (b == 7) is true.

*This statement remains true even when the composition is not the predicate of an if statement.

Outline

• Logical operators

• Control structures

• Assignment and increment/decrement

• Loops

• Review questions

Compound assignment

Combine binary operators with assignment operators:
A += B; ⇒ A = A+B;
A -= B; ⇒ A = A-B;
A *= B; ⇒ A = A*B;
A /= B; ⇒ A = A/B;
A %= B; ⇒ A = A%B;

The right hand side can be either a variable or a constant

Increment and decrement

Increase / decrease the value by one:
A++; ⇒ A = A+1;
A--; ⇒ A = A-1;
++A; ⇒ A = A+1;
--A; ⇒ A = A-1;

The difference between A++ and ++A (or A-- and --A) is precedence.

Increment and decrement

Increase / decrease the value by one:
B = A++; ⇒ { B = A; A = A+1; }
B = A--; ⇒ { B = A; A = A-1; }
B = ++A; ⇒ { A = A+1; B = A; }
B = --A; ⇒ { A = A-1; B = A; }

Increment and decrement

Increase / decrease the value by one:
B = A++; ⇒ { B = A; A = A+1; }
B = A--; ⇒ { B = A; A = A-1; }
B = ++A; ⇒ { A = A+1; B = A; }
B = --A; ⇒ { A = A-1; B = A; }

#include <stdio.h>
int main(void)
{
 int i = 0;
 if(++i) printf("++i was non-zero\n“);
 printf("i=%d\n“ , i);

 i = 0;
 if(i++) printf("i++ was non-zero\n”);
 printf("i=%d\n“ , i);
}

>> ./a.out
++i was non-zero
i=1
i=1
>>

Outline

• Logical operators

• Control structures

• Assignment and increment/decrement

• Loops

• Review questions

Loops

The for loop #include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
{

 printf("%d\n“ , i);
 }
}

>> ./a.out
0
1
2
3
4
5
6
7
8
9
>>

Loops

The for loop:
• Initializes (possibly declares) a loop variable

#include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
{

 printf("%d\n“ , i);
 }
}

Loops

The for loop:
• Initializes (possibly declares) a loop variable

• Iterates while the looping condition is met

#include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
{

 printf("%d\n“ , i);
 }
}

Loops

The for loop:
• Initializes (possibly declares) a loop variable

• Iterates while the looping condition is met

• Adjusts the loop value after each iteration

#include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
{

 printf("%d\n“ , i);
 }
}

Loops

The for loop:
• Initializes (possibly declares) a loop variable

• Iterates while the looping condition is met

• Adjusts the loop value after each iteration

• Performs the calculation in braces
at each iteration

#include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
{

 printf("%d\n“ , i);
 }
}

Loops

The for loop:
• Initializes (possibly declares) a loop variable

• Iterates while the looping condition is met

• Adjusts the loop value after each iteration

• Performs the calculation in braces
at each iteration
• If no braces are provided, it performs the

next command

#include <stdio.h>
int main(void)
{

for(int i=0 ; i<10 ; i++)
 printf("%d\n” , i);

}

Loops

The while loop:
• Iterates until the while condition fails.

• Performs the calculation in braces
at each iteration

#include <stdio.h>
int main(void)
{
 int i = 1;
 while((i%7) != 0)
 {
 printf("%d\n" , i);
 i++;
 }
}

>> ./a.out
1
2
3
4
5
6
>>

Loops

The while loop:
• Iterates until the while condition fails.

• Performs the calculation in braces
at each iteration
• If no braces are provided, it performs the

next command

#include <stdio.h>
int main(void)
{
 int i = 1;
 while((i%7) != 0)
 printf("%d\n" , i++);
}

Loops

The while loop:
• Iterates until the while condition fails.

• Performs the calculation in braces
at each iteration

How about this?

#include <stdio.h>
int main(void)
{
 int i = 0;
 while((i%7) != 0)
 printf("%d\n" , i++);
}

>> ./a.out
>>

Loops

The while loop:
• Iterates until the while condition fails.

Note that a for loop can always
be implemented as a while loop
(and vice versa).

#include <stdio.h>
int main(void)
{
 int i = 1;
 while((i%7) != 0)
 printf("%d\n" , i++);
}

#include <stdio.h>
int main(void)
{
 for(int i=1 ; (i%7) != 0 ; i++)
 printf("%d\n" , i);
}

Loops

The do / while loop:
• Like a while loop, but is always guaranteed

to perform at least one iteration
(i.e. tests the condition after the loop,
not before)

• Performs the calculation in braces
at each iteration

#include <stdio.h>
int main(void)
{
 int i = 0;
 do
 {
 printf("%d\n“ , i);
 i++;
 }
 while((i%7) != 0);
}

Loops

The do / while loop:
• Like a while loop, but is always guaranteed

to perform at least one iteration
(i.e. tests the condition after the loop,
not before)

• Performs the calculation in braces
at each iteration
• If no braces are provided, it performs the

next command

#include <stdio.h>
int main(void)
{
 int i = 0;
 do printf("%d\n” , i++);
 while((i%7) != 0);
}

Loops (summary)

• while(boolean expression) { statements }
• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• do { statements } while (boolean expression)
• Iterates ≥ 1 times, as long as boolean expression is true

• Execute statements at each iteration

• for(init ; boolean expression ; update) { statements }
• init happens first; usually declares & assigns “index variable”

• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• update is run after statements; often it increments the loop variable (i++)

Loops (summary)

• while(boolean expression) { statements }
• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• do { statements } while (boolean expression)
• Iterates ≥ 1 times, as long as boolean expression is true

• Execute statements at each iteration

• for(init ; boolean expression ; update) { statements }
• init happens first; usually declares & assigns “index variable”

• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• update is run after statements; often it increments the loop variable (i++)If statements has the command break, the code terminates the loop
regardless of whether or not boolean expression is true.

#include <stdio.h>
int main(void)
{
 int i = 0;
 do
 {
 printf("%d\n“ , i++);
 if((i%7) != 0)
 break;
 }
 while(true);
}

Loops (summary)

• while(boolean expression) { statements }
• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• do { statements } while (boolean expression)
• Iterates ≥ 1 times, as long as boolean expression is true

• Execute statements at each iteration

• for(init ; boolean expression ; update) { statements }
• init happens first; usually declares & assigns “index variable”

• Iterates ≥ 0 times, as long as boolean expression is true

• Execute statements at each iteration

• update is run after statements; often it increments the loop variable (i++)If statements has the command continue,
the code will skip the remainder of the statements block

#include <stdio.h>
int main(void)
{
 for(int i=0 ; i<6 ; i++)
 {
 if(i==3) continue;
 printf("%d\n“ , i);
 }
}

>> ./a.out
0
1
2
4
5
>>

Outline

• Logical operators

• Control structures

• Assignment and increment/decrement

• Loops

• Review questions

Review questions

1. Which one is the logical "and" operator in C, && or & or both?

&&

Review questions

2. Which one is the logical "negation" operator in C, ~ or ! or both?

!

Review questions

3. What is the result of evaluating:
(34+2)/40 || 80>’A’ && 15%4

In ASCII, ‘A’=65

Review questions

3. What is the result of evaluating:
(34+2)/40 || 80>’A’ && 15%4

⇒ 36/40 || 80>65 && 15%4

⇒ (36/40) || (80>65) && (15%4)

⇒ false || true && true

⇒ false || (true && true)

⇒ false || true

⇒ true

Precedence Operator Associativity

1

++ -- Left-to-right

()

[]

.

->

(type){list}

2

++ -- Right-to-left

+ -

! ~

(type)

*

&

sizeof

_Alignof

3 * / % Left-to-right

4 + -

5 << >>

6
< <=

> >=

7 == !=

8 &

9 ^

10 |

11 &&

12 ||In ASCII, ‘A’=65

Review questions

4. What does the keyword break do in loops?

Terminates the loop

Review questions

5. What does the keyword continue do in loops?

Code skips the remainder of the loop block

Review questions

6. How many times is the initialize statement in a for loop executed?

1

Exercise 4

• Website -> Course Materials -> Exercise 4

	Slide 1: Intermediate Programming Day 4
	Slide 2: Outline
	Slide 3: Logical operators
	Slide 4: Logical operators
	Slide 5: Outline
	Slide 6: Control structures
	Slide 7: Control structures
	Slide 8: Control structures
	Slide 9: Control structures
	Slide 10: Control structures
	Slide 11: Control structures
	Slide 12: Control structures
	Slide 13: Control structures
	Slide 14: Control structures
	Slide 15: Control structures
	Slide 16: Outline
	Slide 17: Compound assignment
	Slide 18: Increment and decrement
	Slide 19: Increment and decrement
	Slide 20: Increment and decrement
	Slide 21: Outline
	Slide 22: Loops
	Slide 23: Loops
	Slide 24: Loops
	Slide 25: Loops
	Slide 26: Loops
	Slide 27: Loops
	Slide 28: Loops
	Slide 29: Loops
	Slide 30: Loops
	Slide 31: Loops
	Slide 32: Loops
	Slide 33: Loops
	Slide 34: Loops (summary)
	Slide 35: Loops (summary)
	Slide 36: Loops (summary)
	Slide 37: Outline
	Slide 38: Review questions
	Slide 39: Review questions
	Slide 40: Review questions
	Slide 41: Review questions
	Slide 42: Review questions
	Slide 43: Review questions
	Slide 44: Review questions
	Slide 45: Exercise 4

