
Intermediate Programming
Day 3

Announcement

• Lecture slides can be found at:
Website -> Course Materials -> Additional Resources

Outline

• Emacs basics

• Working with git

• Zipping files

• Transferring files

• Review questions

Emacs basics

• In the command line prompt, type:

>> emacs <filename>

to start editing.
• If the file exists already, you will be editing that.

• Otherwise, a new file with the specified filename will be created first.

Emacs basics

• Can type directly

• Arrows move you around

• Basics
• [CTRL]-x + [CTRL]-c: quit

• [CTRL]-x + [CTRL]-s: save

• [CTRL]-x + [CTRL]-f: open a file*

• [CTRL]-x + u: undo

• [CTRL]-_: undo

• [CTRL]-g: cancel

*prompts show up at the bottom

Emacs basics

• Cut / Paste:
• [CTRL]-k: kill the rest of the line

• [CTRL]-[SPACE]: set (start) mark

• [CTRL]-w: cut from the mark to the cursor

• [ESCAPE]+w: copy from the mark to the cursor

• [CTRL]-y: copy the previously cut/copied buffer

• Search / Replace:
• [CTRL]-s: search forward*

• [ESCAPE]-%: query replace*

• And much, much more:
• [ESCAPE]+<command name>: ...

Outline

• Emacs basics

• Working with git

• Zipping files

• Transferring files

• Review questions

Working with git

Repo (why)?

• Supports collaboration / sharing

• Version control
• Stores the history as a collection of

concise, semi-automatically annotated,
“snapshots” of the repo

clientclient client

Remote
git server

Working with git

Repo (what)?

• A copy of the entire history of the files/project
• A local copy is stored on your (client) machine.

• A remote copy is stored on the git server
(e.g. github.com)

Local

Remote
git server

Working with git

Repo (how)?

• The repo directory contains:
• Local Repo: A copy of the entire repository

(in the .git subdirectory)

• Working copy: A replica of all the “latest” files.

Local

Remote
git server

Working with git

Getting a remote repo to our local machine:
• Already have an empty repo on github.com

• Clone the repository to ugradx

• Add / modify local files

• Push the edited files in the repo.

Local

clone

push

Remote
git server

Working with git

Before we start:

• We need to tell the git system (on ugradx) a bit about ourselves:

• What name do we want the system to know us by:

git config --global user.name “<your name>”

(quotes are required if there is a space in <your name>)

• What email do we want the system to know us by:

git config --global user.email <your email>

Already have an empty repo on github.com

Already have an empty repo on github.com

Working with git

One you have a repository, you can:
• commit changes you’ve made locally (to create a restore point)

• push those back up to the git server (to synchronize your local repo)

Note:

• git does not know what changes you want to commit.

• You will have to let it know explicitly.

Working with git

To run a git command you type “git”, followed by the command,
followed by the parameters:

• git clone <address>:
• clones a repository from the remote server into the local directory

• git pull:
• fetches the most recent version of the repo from the server and merges it with the repo

(and working copy) on the local machine

• git status:
• display the current status of the repository

• git log:
• display the history of changes (commits)

Working with git

To run a git command you type “git”, followed by the command,
followed by the parameters:

• git add <file name>:
• add the specified file to the list of files that you will be committing

(do this to add a file to the repo or if you’ve changed an existing file)

• git commit –m “<commit message>”:
• commit the changes locally, including a brief message describing the changes.

• git commit –am “<commit message>”:
• like git commit –m “<commit message>” but automatically adds any files that

have been modified (not added) since the last commit

• git push:
• push your local repo back to the server

Working with git

Note that you should not modify a repo directly using standard mv or
rm commands. All interactions should be via the git command:

• git mv <source file> <target file>:
• rename a file

• git rm <file>:
• remove a file (delete it)

For a more complete list, see:
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf

Working with git

• Files in your working copy (you git add’ed them) are tracked and
can be in one of several states:
• Unmodified (same as copy in local repo)

• Modified (different from copy in local repo but not yet staged)

• Staged (next git commit will update the repo)

Unmodified

ModifiedStaged

edit

git add

git commit

Working with git

• The git push / pull / clone
commands synchronize the local
repository with the remote one.

• These commands synchronize the
local/global repos, so be sure that
your working copy matches the
local repo before calling them
(i.e. files are in “unmodified” state)

Unmodified

ModifiedStaged

edit

git add

git commit

Remote

clone

pull

push

Working with git

• Files that are not yet part of your project are untracked
• When you create a new file; it’s unstaged until you git add it

• This is true even if the file is in the directory containing your working copy

• However, git will notice it, and it will appear as unstaged if you git status

• Some untracked files are files that we want git to ignore because
we’ll never want to include them in the remote repo
• Tell git to ignore a file by adding it to .gitignore file

• Good candidates for ignoring might be a.out, gitlog.txt

Working with git

Workflow Suggestions:
• Start each session with git pull, to ensure your local copy is up-to-date

• After you complete work on a small task, git commit it

• Include a message with every commit to explain what changes you committed
(use -m, or you might be forced into vim editor to create one!)

• Make sure you git commit and git push at the end of each work session

Outline

• Emacs basics

• Working with git

• Zipping files

• Transferring files

• Review questions

Zipping files

The zip command lets us package multiple files (and even directories)
into a single (compressed) file.

Why?

• It is easier to move a single file

• The compression may reduce the size of the contents

Zipping files

Basic operations:

• Create a zip file:
zip <zip file name>.zip <file name 1> <file name 2> ...

• Extract the contents of a zip file:
unzip <zip file name>.zip

• List the contents of a zip file:
unzip –l <zip file name>.zip

Outline

• Emacs basics

• Working with git

• Zipping files

• Transferring files

• Review questions

Transferring files

While we will do our work on the ugradx machines, we will
sometimes want to copy our files to other machines.

• Audio

• Video

• Printing

• Uploading to GradeScope

• etc.

Or we may want to move content from our machines to ugradx...

Since the content on our ugradx is ours, we need to do this securely
(using authentication to validate that the files are ours).

Transferring files

To perform local/local copying, we use the copy command, cp.

To perform local/remote or remote/local copying we use the secure
copy command, scp (linux) or pscp (windows)

[p]scp misha@ugradx.cs.jhu.edu:<source> <target>

moves from ugradx to local machine.

[p]scp <source> misha@ugradx.cs.jhu.edu:<target>

moves to ugradx from local machine.

On windows, you will be using Putty, hence the [p]

Transferring files

Example:

If the source file is cs220/foo.c on ugradx and we want to copy it to
the current directory on our local machine:

scp misha@ugradx.cs.jhu.edu:cs120/foo.c .
pscp misha@ugradx.cs.jhu.edu:cs120/foo.c .

If we want to copy the source file to directory foo and call it bar.c:

scp misha@ugradx.cs.jhu.edu:cs120/foo.c foo/bar.c
pscp misha@ugradx.cs.jhu.edu:cs120/foo.c foo\bar.c

Transferring files

Example:

If the source file is cs220/foo.c on ugradx and we want to copy it to
the current directory on our local machine:

scp misha@ugradx.cs.jhu.edu:cs120/foo.c .
pscp misha@ugradx.cs.jhu.edu:cs120/foo.c .

If we want to copy the source file to directory foo and call it bar.c:

scp misha@ugradx.cs.jhu.edu:cs120/foo.c foo/bar.c
pscp misha@ugradx.cs.jhu.edu:cs120/foo.c foo\bar.c

These commands have to be run from your local machine:
• The local machine knows about ugradx.
• ugradx does not know about your local machine.

Outline

• Emacs basics

• Working with git

• Zipping files

• Transferring files

• Review questions

Review questions

1. Why do we use a version control system like git?

• Version control

• Supports collaboration / sharing

Review questions

2. Name six common git commands.

• clone

• pull

• status

• log

• add

• commit

• push

Review questions

3. Where are the files that must be included in your submission?

Your submission must include your source code .c files and your
gitlog.txt bundled in a single .zip file. This file should be
downloaded to your personal computer from ugrad using [p]scp and
then submitted through Gradescope.

Review questions

4. How do you save and quit on the emacs editor?

• [CTRL]-x + [CTRL]-s: save

• [CTRL]-x + [CTRL]-c: quit

Review questions

5. How do you search and replace on emacs?

• [CTRL]-s: search forward

• [ESCAPE]-%: query replace

Exercise 3a & 3b

• Website -> Course Materials -> 3a

• Website -> Course Materials -> 3b

	Slide 1: Intermediate Programming Day 3
	Slide 2: Announcement
	Slide 3: Outline
	Slide 4: Emacs basics
	Slide 5: Emacs basics
	Slide 6: Emacs basics
	Slide 7: Outline
	Slide 8: Working with git
	Slide 9: Working with git
	Slide 10: Working with git
	Slide 11: Working with git
	Slide 12: Working with git
	Slide 13: Already have an empty repo on github.com
	Slide 14: Already have an empty repo on github.com
	Slide 15: Working with git
	Slide 16: Working with git
	Slide 17: Working with git
	Slide 18: Working with git
	Slide 19: Working with git
	Slide 20: Working with git
	Slide 21: Working with git
	Slide 22: Working with git
	Slide 23: Outline
	Slide 24: Zipping files
	Slide 25: Zipping files
	Slide 26: Outline
	Slide 27: Transferring files
	Slide 28: Transferring files
	Slide 29: Transferring files
	Slide 30: Transferring files
	Slide 31: Outline
	Slide 32: Review questions
	Slide 33: Review questions
	Slide 34: Review questions
	Slide 35: Review questions
	Slide 36: Review questions
	Slide 37: Exercise 3a & 3b

