
601.220 Intermediate Programming

Inheritance

601.220 Intermediate Programming Inheritance

Inheritance

Classes we use are often related to each other

class Account {...};, class CheckingAccount {...};

• “is a” relationship; a checking account is a kind of account
• this is inheritance

class GradeList {...};, vector<double>

• “has a” relationship; a grade list has a vector of grades as part
of it

• this is composition or aggregation

601.220 Intermediate Programming Inheritance

Inheritance examples

These are “is a” relationships

601.220 Intermediate Programming Inheritance

Inheritance hierarchy

Multiple levels of “is a” relationships

601.220 Intermediate Programming Inheritance

Inheritance declaration and terminology
class BaseClass {

// Definitions for BaseClass
};
class DerivedClass : public BaseClass {

// Definitions for DerivedClass
};

• Derived class inherits from base class
• Java-like vocab: subclass inherits from superclass (We’ll
typically say “derived” and “base”)

• This is “public inheritance” – by far the most common kind
• access of members in the base class is passed down and

preserved
• protected & private inheritance also possible, but rarely
used. Note: if you forget to explicitly say public, the default
is private and that can get you into trouble

601.220 Intermediate Programming Inheritance

Inheritance access

protected is an access modifier we haven’t used yet

protected fields & functions can only be accessed:

• from member functions of their class
• from member functions defined in derived classes

601.220 Intermediate Programming Inheritance

Inheritance access

Base-class members marked public or protected can be accessed
from member functions defined in the derived class

Base-class members marked private cannot be accessed from
member functions defined in the derived class

• They’re still there, and base class member functions can still
use them, but derived class member functions can’t use them
(without public or protected accessor or mutator functions)

601.220 Intermediate Programming Inheritance

C++ classes: inherit what?

• Derived class inherits most members of base class, whether
public, protected or private

• can only access public and protected members directly

• Does not inherit
• constructors
• assignment operator if explicitly defined

• Derived class cannot delete things it inherited; cannot pick and
choose what to inherit

• But derived class can override inherited member functions
• override = substitute own implementation for base class’s

601.220 Intermediate Programming Inheritance

C++ classes: Bank Account base class
// account.h:
class Account {
public:

Account() : balance(0.0) { }
Account(double initial) : balance(initial) { }

void credit(double amt) { balance += amt; }
void debit(double amt) { balance -= amt; }
double get_balance() const { return balance; }

private:
double balance;

};

Default constructor sets balance to 0; non-default constructor sets
according to argument

balance is private, modified via credit(amt)/debit(amt)

601.220 Intermediate Programming Inheritance

C++: Account usage
// account_main1.cpp:
#include <iostream>
#include "account.h"

using std::cout; using std::endl;

int main() {
Account acct(1000.0);
acct.credit(1000.0);
acct.debit(100.0);
cout << "Balance is: " << acct.get_balance() << endl;
return 0;

}

$ g++ -c account_main1.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o account_main1 account_main1.o
$./account_main1
Balance is: 1900

601.220 Intermediate Programming Inheritance

C++: Inheritance example Checking

// checkingaccount.h:
class CheckingAccount : public Account {
public:

CheckingAccount(double initial, double atm) :
Account(initial), total_fees(0.0), atm_fee(atm) { }

void cash_withdrawal(double amt) {
total_fees += atm_fee;
debit(amt + atm_fee);

}

double get_total_fees() const { return total_fees; }

private:
double total_fees;
double atm_fee;

};

601.220 Intermediate Programming Inheritance

C++: Calling base class constructor

• Derived classes don’t inherit constructors, but (usually) need to
call their base class constructor to initialize inherited data
members

• We do this with the base class name in C++ (no super() like in
Java)

• The base class constructor call must be the first thing in the
derived class constructor

• If the base class constructor call is missing, then a default
constructor for the base class will be called automatically; error
if one doesn’t exist!

CheckingAccount(double initial, double atm) :
Account(initial), total_fees(0.0), atm_fee(atm) { }

Notice the Account(initial) call to the base class constructor

601.220 Intermediate Programming Inheritance

C++: Inheritance example Savings

// savingsaccount.h:
class SavingsAccount : public Account {
public:

SavingsAccount(double initial, double rate) :
Account(initial), annual_rate(rate) { }

// Not implemented here; usual compound interest calc
double total_after_years(int years) const;

private:
double annual_rate;

};

601.220 Intermediate Programming Inheritance

Inheritance usage
// account_main2.cpp:
#include <iostream>
#include "account.h"
#include "savingsaccount.h"
#include "checkingaccount.h"

using std::cout; using std::endl;

int main() {
Account acct(1000.0);
acct.credit(1000.0);
acct.debit(100.0);
cout << "Account balance is: $" << acct.get_balance() << endl;

CheckingAccount checking(1000.0, 2.00);
checking.credit(1000.0);
checking.cash_withdrawal(100.0); // incurs ATM fee
cout << "Checking balance is: $" << checking.get_balance() << endl;
cout << "Checking total fees is: $" << checking.get_total_fees() << endl;

SavingsAccount saving(1000.0, 0.05);
saving.credit(1000.0);
cout << "Savings balance is: $" << saving.get_balance() << endl;
return 0;

}

601.220 Intermediate Programming Inheritance

Inheritance

$ g++ -c account_main2.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o account_main2 account_main2.o
$./account_main2
Account balance is: $1900
Checking balance is: $1898
Checking total fees is: $2
Savings balance is: $2000

601.220 Intermediate Programming Inheritance

C++: Inheritance & Destructors

• When a derived class object is created, its inherited (base)
parts must be initialized before any newly defined parts by
executing a base constructor (default or explicit call to one)

• When the lifetime of a derived class object is about to end, two
destructors are called: the one defined for the derived object
and then the one defined for the base class

• Either destructor may be explicitly defined, or just the provided
default

• Note that constructors and destructors are executed in opposite
orders!

601.220 Intermediate Programming Inheritance

