601.220 Intermediate Programming

Destructors

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

® new and delete are essentially the C++ versions of malloc
and free

® Big difference: new not only allocates the memory, it also calls
the appropriate constructor if needed

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

// new_egl.cpp:
#include <iostream>

using std::cout;
using std::endl;

class DefaultSeven {
public:
DefaultSeven() : i(7) { }
int get_i() { return i; }
private:
int i;

};

int main() {
DefaultSeven s;
DefaultSeven *sptr = new DefaultSeven(); // using neu

cout << "s.get_i() = " << s.get_i() << endl;

cout << "sptr->get_i() = " << sptr->get_i() << endl;
delete sptr; // free the memory before exiting
return 0;

220 Intermediate Programmi Destructors

C++ dynamic memory allocation revisited

$ g++ -std=c++11 -pedantic -Wall -Wextra -c new_egl.cpp
$ g++ -o new_egl new_egl.o

$./nev_egl

s.get_i() =7

sptr->get_i() =7

® new called the default constructor for us in both cases

® delete releases the memory, but we should also set sptr to NULL

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

T * fresh = new T[n] allocates an array of n elements of type T

Use delete[] fresh to deallocate — always use delete[] (not
delete) to deallocate a pointer returned by new T[n]

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

If Tis a class, then T's default constructor is called for each
element allocated

If Tis a “built-in" type (int, float, char, etc), then the values
are not initialized, like with malloc

601.220 Intermediate Programming Destructors

C++ dynamic memory allocation revisited

// new_eg2.cpp:
#include <iostream>

using std::cout;
using std::endl;

class DefaultSeven {
public:
DefaultSeven() : i(7) { }
int get_i() { return i; }
private:
int i;

¥

int main() {
DefaultSeven *s_array = new DefaultSeven[10];
for(int i = 0; i < 10; i++) {
cout << s_array[i]l.get_i() << " ";
s
cout << endl;
delete[] s_array;
return O;

220 Intermediate Programmi Destructors

C++ dynamic memory allocation revisited

$ gt++ -std=c++11 -pedantic -Wall -Wextra -c new_eg2.cpp
$ g++ -o new_eg2 new_eg2.0

$./new_eg2

TTTTTTTTTT

Confirming that default constructor was indeed called for all 10 elements

601.220 Intermediate Programming Destructors

C++ classes: destructors

® A class constructor's job is to initalize the fields of the object

® |t's common for a constructor to obtain a resource (allocate
memory, open a file, etc) that should be released when the
object is destroyed

® A class destructor is a method called by C++ when the object’s
lifetime ends or it is otherwise deallocated (ie, with delete)

® A destructor's name is the name of the class prepended with ~,
e.g. ~Rectangle()

® The destructor is always automatically called when object’s
lifetime ends, including when it is deallocated

® [|t's a convenient place to clean up

601.220 Intermediate Programming Destructors

C++ classes: destructors

// sequence.h:
#include <cassert>

// What does this class do? Anything wrong with it?
class Sequence {
public:

Sequence() : array(NULL), size(0) { }

// Note: constructor can have both an initializer
// list and statements in its body
Sequence(int sz) : array(new int[sz]), size(sz) {
for(int i = 0; i < sz; i++) {
array[i] = i;

}

int at(int i) {
assert(i < size);
return arrayl[il;

}

private:
int *array;
int size;

};

220 Intermediate Programmi Destructors

C++ classes: destructors

// sequence_main.cpp:
#include <iostream>
#include "sequence.h"

using std::cout;
using std::endl;

int main() {

Sequence seq(10);

for(int i = 0; i < 10; i++) {
cout << seq.at(i) << ' ';

}

cout << endl;

return 0O;

gt++ -std=c++11 -pedantic -Wall -Wextra -c
g++ -0 sequence_main sequence_main.o
./sequence_main

123456789

sequence_main.cpp -g

601.220 Intermediate Programming Destructors

C++ classes: destructors

valgrind finds a leak!

==12306== HEAP SUMMARY:
in use at exit: 40,185 bytes in 431 blocks
total heap usage: 510 allocs, 79 frees, 46,345 bytes allocated

40 bytes in 1 blocks are definitely lost in loss record 29 of 83
at 0x100009EAB: malloc (in 3.11.0/1lib/valgrind/vgpreload_memcheck-amd64-darwin.so)
by 0x10004E43D: operator new(unsigned long) (in /usr/lib/libc++.1.dylib)
by 0x10000130A: Sequence::Sequence(int) (in ./sequence_main)
by 0x10000111A: Sequence::Sequence(int) (in ./sequence_main)
by 0x10000107C: main (in ./sequence_main)

LEAK SUMMARY:

definitely lost: 40 bytes in 1 blocks

indirectly lost: O bytes in O blocks

possibly lost: O bytes in 0 blocks

still reachable: 4,096 bytes in 1 blocks
12306== suppressed: 36,049 bytes in 429 blocks
12306== Reachable blocks (those to which a pointer was found) are not shown.
==12306== To see them, rerun with: --leak-check=full --show-leak-kinds=all

220 Intermediate Programmi Destructors

C++ classes: destructors

Allocates new int[sz] in constructor, but never delete[]s it

It's common for a constructor to obtain a resource (allocate memory,
open a file, etc) that should be released when the object is destroyed

Destructor is a function called by C4++ when the object’s lifetime
ends, or is otherwise deallocated (i.e. with delete)

It's common for a destructor to release the resource (deallocate
memory, close a file, etc)

601.220 Intermediate Programming Destructors

C++ classes: destructors

// sequence.h:
#include <cassert>

class Sequence {
public:
Sequence() : array(NULL), size(0) { }

Sequence(int sz) : array(new int[sz]), size(sz) {
for(int i = 0; i < sz; i++) {
array[i] = i;

}

[/ **% destructor **xx
~Sequence() { delete[] array; }

int at(int i) {
assert(i < size);
return array[il;
s
private:
int *array;
int size;

220 Intermediate Programmi Destructors

C++ classes: destructors

$ g++ -std=c++11 -pedantic -Wall -Wextra -c sequence_main.cpp -g
$ g++ -o sequence_main sequence_main.o

$./sequence_main

0123456789

601.220 Intermediate Programming Destructors

C++ classes: destructors

==12568== HEAP SUMMARY:

==12568== in use at exit:
==12568== total heap usage:
==12568==

==12568== LEAK SUMMARY:
==12568== definitely lost:
==12568== indirectly lost:
==12568== possibly lost:
==12568== still reachable:

==12568== suppressed:

40,121 bytes in 429 blocks
509 allocs, 80 frees, 46,321 bytes allocated

0 bytes in O blocks

0 bytes in 0 blocks

0 bytes in O blocks

4,096 bytes in 1 blocks
36,025 bytes in 428 blocks

==12568== Reachable blocks (those to which a pointer was found) are not shown.
==12568== To see them, rerun with: --leak-check=full --show-leak-kinds=all

601.220 Intermediate Programming Destructors

C++ classes: destructors

Destructors are nearly always a better option than creating a special member
function for releasing resources; e.g.:

// sequence.h:
#include <cassert>

class Sequence {
public:

// User must call clean_up when finished with Sequence
void clean_up() { delete[] array; }

601.220 Intermediate Programming Destructors

C++ classes: destructors

User forgets to call clean_up:

{
Sequence s(40);

// ... (no call to s.clean_up())
} // s lifetime ends and memory is leaked

More subtly:

{
Sequence s(40);
if (some_condition) {
return 0; // memory leaked!
}

s.clean_up();

601.220 Intermediate Programming Destructors

C++ classes: destructors

® Destructor is always automatically called when object’s lifetime

ends or it is deallocated
® You don't have to go hunting for all the places to put

object.clean_up()

601.220 Intermediate Programming Destructors

Quiz!

The destructor of an object is NOT necessarily called if ...
A. an object’s lifetime is over

B. an object is deallocated

C. there are no references to an object

D. None of the above

601.220 Intermediate Programming Destructors

