
601.220 Intermediate Programming

C++ classes

601.220 Intermediate Programming C++ classes



C++: non-object-oriented programming

We already saw structs, which bring together several variables that
collectively describe one “thing”:

struct rectangle {
double width;
double height;

};

We might additionally define some functions that do things with
rectangles, like print them or calculate their area:

601.220 Intermediate Programming C++ classes



C++: non-object-oriented programming
// rectangle1.cpp:
#include <iostream>

using std::cout;
using std::endl;

struct rectangle {
double width;
double height;

};

void print_rectangle(struct rectangle r) {
cout << "width=" << r.width

<< ", height=" << r.height << endl;
}

double area(struct rectangle r) {
return r.width * r.height;

}

int main() {
rectangle r = {30.0, 40.0};
print_rectangle(r);
cout << "area=" << area(r) << endl;
return 0;

}

601.220 Intermediate Programming C++ classes



C++: non-object-oriented programming

$ g++ -c rectangle1.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o rectangle1 rectangle1.o
$ ./rectangle1
width=30, height=40
area=1200

601.220 Intermediate Programming C++ classes



C++: Object-oriented programming

As good Java or Python programmers, though, we prefer to have
the related functionality (print_rectangle, area) be part of the
object (the struct in this case)

No simple way to do this in C. But in C++. . .

601.220 Intermediate Programming C++ classes



C++: Object-oriented programming

#include <iostream>

using std::cout;
using std::endl;

class Rectangle {

public:
double width;
double height;

void print() const {
cout << "width=" << width << ", height=" << height << endl;

}

double area() const {
return width * height;

}
};

601.220 Intermediate Programming C++ classes



C++: Object-oriented programming

//continuation of file on previous slide

int main() {
Rectangle r = {30.0, 40.0};
r.print();
cout << "area=" << r.area() << endl;
return 0;

}

601.220 Intermediate Programming C++ classes



C++: Object-oriented programming

• A class definition is like a blueprint defining a type
• Objects of that type are created from that blueprint

• Once we define a class, we have one blueprint from which we
can create 0 or more objects

• Each of the objects is an instance of the class and has its own
copies of all instance variables

601.220 Intermediate Programming C++ classes



C++: Object-oriented programming

void print() const { ...

• The use of const as modifier in method header indicates that
the function will not modify any member fields

• the rectangle object on which we call print will not be
modified by the call

601.220 Intermediate Programming C++ classes



C++ classes

Basic principles for writing C++ classes

• Class definition goes in a .h file

• Functions can be declared and defined inside class { ... };

• Only define member function inside the class definition if it’s
very short

• this is called “in-lining” the function definition

• Otherwise, put a prototype in the class definition and define
the member function in a .cpp file

• you’ll need to qualify the function with the class scope such as
Classname::function() { } in the .cpp file

601.220 Intermediate Programming C++ classes



C++ classes

#ifndef RECTANGLE_H
#define RECTANGLE_H
class Rectangle {

...
double area() const {

// short definition inside class
return width * height;

}
};
#endif

601.220 Intermediate Programming C++ classes



C++ classes

Or, in Rectangle.h:

#ifndef RECTANGLE_H
#define RECTANGLE_H
class Rectangle {

...
double area() const;
...

};
#endif

Later, in Rectangle.cpp:

#include "Rectangle.h"

double Rectangle::area() const { // def'n outside class
return width * height;

}

601.220 Intermediate Programming C++ classes



C++ classes

• Fields and member functions can be public or private

• (or protected, discussed later)

• We use public: and private: to divide class definition into
sections according to whether members are public or private

• Everything is private by default

601.220 Intermediate Programming C++ classes



C++ classes

• A public field or member function can be accessed freely by any
code with access to the class definition (code that includes the
.h file)

• A private field or member function can be accessed from other
member functions in the class, but not by a user of the class

601.220 Intermediate Programming C++ classes



C++ classes

class Rectangle {
public:

double area() const {
// definition inside class
return width * height; // OK

}
...

private:
double width, height;

};

601.220 Intermediate Programming C++ classes



C++ classes

class Rectangle {
...

private:
double width, height;

};

int main() {
Rectangle r;
std::cout << r.width << std::endl; // not OK!
return 0;

}

601.220 Intermediate Programming C++ classes



C++ classes

• Don’t try to initialize class fields immediately when they are
declared

class Rectangle {
...

double width = 10; // NO!
};

• This kind of initialization is only allowed for static fields

601.220 Intermediate Programming C++ classes



C++ classes

// rectangle3.h:

class Rectangle {
public:

double area() const {
return width * height;

}

private:
double width, height;

};

601.220 Intermediate Programming C++ classes


