
601.220 Intermediate Programming

Dynamic memory allocation

601.220 Intermediate Programming Dynamic memory allocation



C++ dynamic memory allocation

new and delete are essentially the C++ versions of malloc and
free

Big difference: new not only allocates the memory, it also calls the
appropriate constructor if used on a class type (more on this later)

Small difference: new and delete are “keywords” rather than
functions, so you don’t use (...) when calling them

601.220 Intermediate Programming Dynamic memory allocation



new usage
// dynamic1.cpp:
#include <iostream>

using std::cout;
using std::endl;

int main() {
int *iptr = new int;
*iptr = 10;
cout << "value of iptr " << iptr << endl;
cout << "value in *iptr " << *iptr << endl;
return 0;

}

$ g++ -c dynamic1.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o dynamic1 dynamic1.o
$ ./dynamic1
value of iptr 0x558000a87eb0
value in *iptr 10

601.220 Intermediate Programming Dynamic memory allocation



delete usage

delete deletes something allocated with new
// dynamic2.cpp:
#include <iostream>

using std::cout;
using std::endl;

int main() {
int *iptr = new int;
*iptr = 10;
// do more with iptr
delete iptr;
cout << "after delete" << endl;
cout << "value in *iptr " << *iptr << endl;
cout << "value of iptr " << iptr << endl;
// note: new and delete don't use parentheses,
// unlike malloc() / free()
return 0;

}

601.220 Intermediate Programming Dynamic memory allocation



C++ delete usage

$ g++ -c dynamic2.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o dynamic2 dynamic2.o
$ ./dynamic2
after delete
value in *iptr 0
value of iptr 0x55f4e3ad1eb0

601.220 Intermediate Programming Dynamic memory allocation



C++ dynamic array allocation

T * fresh = new T[n] allocates an array of n elements of type T

Use delete[] fresh to deallocate – always use delete[] (not
delete) to deallocate a pointer returned by new T[n]

If T is a “built-in” type (int, float, char, etc), then the values
are not initialized, like with malloc

If T is a class, then T’s default constructor is called for each
element allocated (more on this soon)

601.220 Intermediate Programming Dynamic memory allocation



C++ dynamic array allocation in action

// dynamic3.cpp:
#include <iostream>

using std::cout;
using std::endl;

int main() {
double *d_array = new double[10];
for(int i = 0; i < 10; i++) {

cout << (d_array[i] = i * 2) << " ";
}
cout << endl;
delete[] d_array;
return 0;

}

$ g++ -c dynamic3.cpp -std=c++11 -pedantic -Wall -Wextra
$ g++ -o dynamic3 dynamic3.o
$ ./dynamic3
0 2 4 6 8 10 12 14 16 18

601.220 Intermediate Programming Dynamic memory allocation


