601.220 Intermediate Programming

Introduction to C++

601.220 Intermediate Programming Introduction to C++

C versus C++

If learning C is like learning “business English,” learning C++ is like
learning the rest of English

@

601.220 Intermediate Programming Introduction to C++

C versus C++

Sometimes programming in C is the best or only option

® You “inherited” C code
® No C++ compiler is available for system you're targeting

® Your software must work closely with the Linux kernel, or other
C-based software

If we started a new project today, especially if it was big or involved
many people, we'd probably choose C++

601.220 Intermediate Programming Introduction to C++

C versus C++

Classes — like Java classes
Templates — like Java generics
Standard Template Library — like java.util

More convenient text input & output

601.220 Intermediate Programming Introduction to C++

C versus C++

C++ is not a “superset” of C; most C programs don’t immediately
work in C4++

Think of C and C++ as closely related but different languages

601.220 Intermediate Programming Introduction to C++

C versus C++

Many features/concepts from C language are also relevant in C++:

types: int, char, float, double, pointer types

® C++ adds bool (equals either true or false)
numeric representations & properties
operators: assignment, arithmetic, relational, logical
arrays, pointers, * and &, pointer arithmetic

control structures: if/else, switch/case, for, while,
do/while

pass-by-value (still the default), pass by address
stack vs. heap, scope & lifetime

(with minor differences) struct

601.220 Intermediate Programming Introduction to C++

C++

Our favorite tools work just as well with C++:

git

make

gdb
valgrind

601.220 Intermediate Programming Introduction to C++

C++

// hello_world.cpp:
#include <iostream>

using std::cout;
using std::endl;

int main() {
cout << "Hello world!" << endl;
return O;

}

$ g++ -std=c++11 -pedantic -Wall -Wextra -c hello_world.cpp
$ g++ hello_world.o -o hello_world

$./hello_world

Hello world!

601.220 Intermediate Programming Introduction to C++

C++

Programming stages same as for C:

® edit -> preprocess -> compile -> link -> execute
When compiling/linking:

® g++ instead of gcc

® —std=c++11 instead of -std=c99

® .cpp instead of .c
$ g++ -std=c++11 -pedantic -Wall -Wextra -c hello_world.cpp
$ g++ hello_world.o -o hello_world

$./hello_world
Hello world!

601.220 Intermediate Programming Introduction to C++

C++

Options we used with gcc work with g++ too

® -0 to set name of executable

® —c to compile to .o file

® —g to include debug symbols

® -Wall -Wextra -pedantic for sensitive warnings & errors

601.220 Intermediate Programming Introduction to C++

C++: libraries

#include <iostream>
As with C, C++ library headers are included with < angle brackets >
For C++ headers, omit the trailing .h

® <jostream>, not <iostream.h>

#include "linked_list.h"

User-defined headers use " quotes " and end with .h as usual

601.220 Intermediate Programming Introduction to C++

C++: libraries

Can use familiar C headers: assert.h, math.h, ctype.h,
stdlib.h, ...

When #include'ing, drop .h & add c at the beginning:

// hello_world_2.cpp:
#include <iostream>
#include <cassert> // dropped .h, added c at beginning

using std::cout;
using std::endl;

int main(int argc, char *argv[]) {
assert(argc > 1); // our old friend assert
cout << "Hello " << argv[i] << "!" << endl;
return 0O;

601.220 Intermediate Programming Introduction to C++

C++: 1/0

$ g++ -std=c++11 -pedantic -Wall -Wextra -c hello_world_2.cpp
$ g++ hello_world_2.0 -o hello_world_2

$./hello_world_2 Everyone

Hello Everyone!

Note: argc and argv work just like in C

601.220 Intermediate Programming Introduction to C++

C++: 1/0

iostream is the main C++ library for input and output

#include <iostream>

601.220 Intermediate Programming Introduction to C++

C++: 1/0

using std::cout;
using std::endl;

C++ has namespaces.

® In C, when two things have the same name, we get errors (from
compiler or linker) and confusing situations (“shadowing”)

® In C++4, items with same name can safely be placed in distinct
“namespaces”, similar to Java packages / Python modules

601.220 Intermediate Programming Introduction to C++

C++: namespaces

Most C++ functionality lives in namespace called std
If we didn't include:

using std::cout;
using std::endl;

at the top, then we would have to write the fully qualified name
each time:

std::cout << "Hello world" << std::endl;

601.220 Intermediate Programming Introduction to C++

C++: namespaces

Do not use using in a header file

Doing so affects all the source files that include that header, even
indirectly, which can lead to confusing name conflicts

® Only use using in source .cpp files
® This will be enforced in homework grading

Use fully qualified names (e.g. std: :endl) in headers

601.220 Intermediate Programming Introduction to C++

C++: namespaces

using namespace std; //too broad!

® This is a catch-all way to include everything in the std
namespace, whether you need it all or not

® Causes confusion due to accidental name conflicts, so we
disallow it in this course

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

Text input & output in C++ are simpler than in C, thanks to
C++'s stream operators and libraries

(We will not cover binary 1/0 in C++)

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

cout << "Hello world!" << endl;

cout is our old friend, the standard output stream

® Like stdout in C
endl is the newline character

® C++ has '\n' too, but endl is usually preferred
<< is the insert operator

® replacing the placeholder syntax of printf in C
Comparing it with how it is written in C:

printf ("Hello world!\n");

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

Insert operator joins all the items to write in a “chain”

Leftmost item in chain is the stream being written to

cout << "We have " << inventory << " " << item << "s left,"
<< " costing $" << price << " per unit" << endl;

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

// cpp_io_1.cpp:
#include <iostream>
using std::cout;
using std::endl;

int main() {
int inventory = 44;
double price = 70.07;

const char *item = "chainsaw";

cout << "We have " << inventory << " " << item << "s left,"
<< " costing $" << price << " per unit" << endl;

return 0O;

}

$ g++ -std=c++11 -pedantic -Wall -Wextra -c cpp_io_1.cpp
$ g++ cpp_io_l.0 -o cpp_io_1

$./cpp_io_1

We have 44 chainsaws left, costing $70.07 per unit

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

No format specifiers (%d, %s etc)
Instead, items to be printed are arranged in printing order; easier to
read and understand

int inventory = 44;

double price = 70.70;

const char *item = "chainsaw";

cout << "We have " << inventory << " " << item << "s left,"
<< " costing $" << price << " per unit" << endl;

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

An example of C++ 1/0 but also an example of operator
overloading

<< usually does bitwise left-shift; but if operand on the left is a C++
stream (cout), << is the insert operator

cout << "Hello world!" << endl;

More on this later

601.220 Intermediate Programming Introduction to C++

C++: 1/0O - std: :cout and <<

How much of C can we use in C4++7 Nearly everything.

// cpp_io_2.cpp:
#include <cstdio>

int main() {
int inventory = 44;
double price = 70.70;
const char *item = "chainsaw";

printf ("We have %d %ss left costing $/%f per unit\n",
inventory, item, price);
return O;

}

$ g++ -std=c++11 -pedantic -Wall -Wextra -c cpp_io_2.cpp
$ g++ cpp_io_2.0 -o cpp_io_2

$./cpp_io_2

We have 44 chainsaws left costing $70.700000 per unit

601.220 Intermediate Programming Introduction to C++

C++:1/O - std::cin and >>

How about scanf?

// cpp_io_3.cpp:
#include <iostream>
#include <string> // new header -- not used in C

using std::cout; using std::cin;
using std::endl; using std::string;

int main() {
cout << "Please enter your first name: ";
string name;
cin >> name; // read user input into string object
cout << "Hello, " << name << "I" << endl;
return O;

3

C++:1/O - std::cin and >>

$ g+t+ -std=c++11 -pedantic -Wall -Wextra -c cpp_io_3.cpp
$ g++ cpp_io_3.0 -o cpp_io_3

$ echo Ed | ./cpp_io_3

Please enter your first name: Hello, Ed!

601.220 Intermediate Programming Introduction to C++

C++:1/O - std::cin and >>

cin >> name;

Reads one whitespace-delimited token from standard input and
places the result in string name

>> is the extraction operator

601.220 Intermediate Programming Introduction to C++

C++:1/O - std::cin and >>

// smallest_word.cpp:

#include <iostream>

#include <string>

using std::cout; using std::cin;
using std::endl; using std::string;

int main() {
string word, s_word;
while(cin >> word) {
if (s_word.empty() || word < s_word) s_word = word;
}
cout << s_word << endl;
return O;

601.220 Intermediate Programming Introduction to C++

C++:1/O - std::cin and >>

$ g++ -std=c++11 -pedantic -Wall -Wextra -c smallest_word.cpp
$ g++ smallest_word.o -o smallest_word

$ echo "the quick brown fox" | ./smallest_word

brown

601.220 Intermediate Programming Introduction to C++

C++:1/O - std::cin and >>

while(cin >> word) {
/7 ...
}

cin >> word evaluates to true if the input stream is still in a
“good state” (no error, no EOF) after reading the word

601.220 Intermediate Programming Introduction to C++

C++:1/0 - std::cin.get ()

// uppercase_cpp.cpp:

#include <iostream>

#include <cctype>

using std::cout; using std::cin; using std::endl;

int main() {

char ch;

while(cin.get(ch)) { // read single character
ch = toupper(ch);
cout << ch; // print single character

}

cout << endl;

return O;

601.220 Intermediate Programming Introduction to C++

C++:1/0 - std::cin.get ()

$ g++ -std=c++11 -pedantic -Wall -Wextra -c uppercase_cpp.cpp
$ gt++ uppercase_cpp.o -0 uppercase_cpp

$ echo "The Quick Brown Fox" | ./uppercase_cpp

THE QUICK BROWN FOX

601.220 Intermediate Programming Introduction to C++

