
601.220 Intermediate Programming

Linked lists

601.220 Intermediate Programming Linked lists



Linked List

• linear data structure in which the elements, called nodes, are
not stored at contiguous memory locations (in contrast with
arrays)

• each node comprises two items - the data it stores and a
pointer to the next node

• last node’s next pointer points to NULL
• the entry point is called head
• the head pointer is not itself a node; it just holds the address
of first node

• in an empty linked list, the head pointer points to NULL

601.220 Intermediate Programming Linked lists



Linked List

Node

Data Next

10 *ptr

Linked Lists

Head

A D F Z NULL

601.220 Intermediate Programming Linked lists



Linked List vs Array

601.220 Intermediate Programming Linked lists



Linked List vs Array

Array Linked List
size of the array is fixed sized of linked list is not fixed
occupies less memory for requires more space because
the same number of elements of “next”
accessing i’th value is fast has to traverse the list from
using indices (simple arithmetic) start
inserting new elements is expensive after deciding where to add,

is straightforward (no shifting)
no deleting without shifting items deleting is easy (kind of)

601.220 Intermediate Programming Linked lists



Node struct & create_node

typedef struct node_ {
char data; // could be any type
struct node_ * next; // self-referential!

} Node;

Node * create_node(char ch) {
Node * node = (Node *) malloc(sizeof(Node));
assert(node);
node->data = ch;
node->next = NULL;
return node;

}

601.220 Intermediate Programming Linked lists



List print function

• print - output all data items in order from head to tail
• void print(const Node * head)
• use a Node pointer named cur to advance node by node

through list, and each time cur encounters another node,
output that node’s data value

• Analogy: using for loop to print all elements of an array
print(cur);

Head

A D F Z NULL

*cur

K

• What is the output of print(cur)?

601.220 Intermediate Programming Linked lists



List length function

• length - reports number of items currently in list
• long length(const Node * head)
• use a Node pointer named cur to advance node by node

through list, and increment a counter each time cur encounters
another node

length(cur);

Head

A D F Z NULL

*cur

K

• What is the output of length(cur)?

601.220 Intermediate Programming Linked lists



List add_after
• add_after - insert new node with a given data value
immediately after a given existing node

• void add_after(Node * node, char val)
• val parameter is data value to place in new node
• node parameter holds address of existing node that new one

should be placed right after
• the new node needs to be dynamically allocated
• additional statements are needed to adjust links appropriately so

list stays connected
add_after(cur, ‘K’);

Head

A D F Z NULL

K NULL

*cur

1) Create a new node

2) Add the new node after *cur

K

601.220 Intermediate Programming Linked lists



quiz!
Consider the following program. What output is printed?

#include <stdio.h>
#include <stdlib.h>
typedef struct node_ {

char data;
struct node_ *next;

} Node;

int main(void) {
Node *a = malloc(sizeof(Node)),

*b = malloc(sizeof(Node)),
*n;

a->data = 'A';
b->data = 'B';
a->next = b;
b->next = a;
for (n = a; n != NULL; n = n->next) {

printf("%c ", n->data);
}
printf("\n");
return 0;

}

What output is printed?

A. No output is printed

B. A

C. A B

D. B A

E. None of the above

601.220 Intermediate Programming Linked lists


