601.220 Intermediate Programming

Lifetime and scope of variables

601.220 Intermediate Programming Lifetime and scope of variables



Outline

® |ifetime and scope of variables

601.220 Intermediate Programming Lifetime and scope of variables



Variable lifetime and scope

o Jifetime of a variable: the period of time during which the value
exists in memory

® scope of a variable: the region of code in which the variable
name is usable

601.220 Intermediate Programming Lifetime and scope of variables



Types of variables in C

® Local (“stack”) variables
® Alive from point of declaration until end of block in which

declared
® Automatically created when enter that function, and destroyed
when that function ends (more precisely - the curly brackets)
® Lifetime and scope are similar, but not the same. ..

601.220 Intermediate Programming Lifetime and scope of variables



Lifetime and scope are related, but. ..

® | ocal variables go out of scope during calls to other functions

// mainVarOutOfScope.c:
#include <stdio.h>
void outputHello() {
printf("Hello!\n"); // Here, a is mot in scope

}

int main() {
int a = 12;
outputHello();
printf("7%4", a);
return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic mainVarOutOfScope.c

$ ./a.out

Hello!

12

601.220 Intermediate Programming Lifetime and scope of variables



Lifetime and scope are related, but. ..

® A variable in scope may be temporarily “hidden” when an inner
scope declares a variable with the same name
// mestedScope.c:

#include <stdio.h>
int main() {

int i = 12; // I'm a variable named %

printf("i before loop: %d ", 1i);

for (int i = 0; i < 1; i++) { // I'm a NEW variable named 1%
printf("i inside loop: %d ", 1i);

¥

printf("i after loop: %d\n", 1i); // I'm the old %

return O;

}
$ gcc -std=c99 -Wall -Wextra -pedantic nestedScope.c

$ ./a.out
i before loop: 12 i inside loop: O i after loop: 12

601.220 Intermediate Programming Lifetime and scope of variables



Types of variables in C, continued

e Static variables (declared using static keyword)
® Have similar scope to local variables, but longer lifetime
® Automatically created and initialized to zero(!), but not
destroyed at end of block of code. Persist, so that next time
same block is executed, they come back into scope with the
same value they had before

601.220 Intermediate Programming Lifetime and scope of variables



Local variables

// localVar.c:
#include <stdio.h>
int addInt (int x, int y) {
int result = 0; // I'm a local wariable
result += x + y; // Add (z+y) to exzisting result, which has value O
return result;
}
int main() {
printf("addInt(3,4) returns %d\n", addInt(3,4));
printf("addInt(2,1) returns %d\n", addInt(2,1));
return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic localVar.c
$ ./a.out

addInt(3,4) returns 7

addInt(2,1) returns 3

601.220 Intermediate Programming Lifetime and scope of variables



Static variables

// staticVar.c:
#include <stdio.h>
int addInt (int x, int y) {
static int result; // I'm a static wariable
result += x + y; // Add (z+y) to existing result
return result;
}
int main() {
printf("addInt(3,4) returns %d\n", addInt(3,4));
printf("addInt(2,1) returns %d\n", addInt(2,1));
return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic staticVar.c
$ ./a.out

addInt(3,4) returns 7

addInt(2,1) returns 10

601.220 Intermediate Programming Lifetime and scope of variables



Types of variables in C, continued

¢ Global variables (declared outside any function)
® Automatically created at program start and initialized to zero(!)
® Have scope from point of declaration until end of program
® Can be accessed by any function
® Can even be accessed by functions in other files (after brought
into scope using extern <type> <name> in that file)

601.220 Intermediate Programming Lifetime and scope of variables



Global variables

// globalVar.c:
#include <stdio.h>

int result; // I'm a global wariable, in scope all over!

void addX (int x) {
result += x;

void multiplyByX (int x) {
result *= x;

int main() {
addX(5) ;
multiplyByX(10);
printf("result equals %d\n", result);
return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic globalVar.c
$ ./a.out
result equals 50

220 Intermediate Programmi Lifetime and scope of variables



Beware of global variables

® Usage of global variables is generally discouraged
® debugging is harder; difficult to track which function might have
changed a global variable's value (since it could be any
function!)
® global variables cross boundaries between program modules,
undoing benefits of modular code
® readability
® testability
® reusability
® usually, values should be conveyed via parameter passing and
return values

601.220 Intermediate Programming Lifetime and scope of variables



Where do different types of variables get stored?

® | ocal variables live in a region of memory known as the stack
® Stack frames are added/removed as functions get called and
then return
® Both static and global variables live in a region of memory
known as the data segment
® The data segment is allocated when program begins, freed
when program exits
® Dynamically-allocated memory lives in a third region of
memory, called the heap
® User is responsible for allocating and freeing memory in the heap

601.220 Intermediate Programming Lifetime and scope of variables



Zoom poll!

What output is printed by the program below?

#include <stdio.h> A.67
void m() { B.6 6
static int x = 5; C.56
X++;
printf("%d ", x); D.5 5
}

E. Code does not compile and/or

roduce any ouput
int main(void) { P youp

nQ);
m();

return O;

601.220 Intermediate Programming Lifetime and scope of variables



