
601.220 Intermediate Programming

Pointer Operations

601.220 Intermediate Programming Pointer Operations



Outline

• Pointer operations
• Pointer arithmetic for arrays
• Pointer difference type
• Pointers and c-strings

601.220 Intermediate Programming Pointer Operations



Pointer Operations

• Assignment
• Comparisons
• Arithmetic

601.220 Intermediate Programming Pointer Operations



Pointer Assignment

• ptr1 = ptr2; assignment works for pointers of the same type
• only the memory address in ptr2 is copied
• they reference the same memory location

• *ptr1 = 10; leads to *ptr2 == 10 being true

601.220 Intermediate Programming Pointer Operations



Pointer Comparisons

• ptr1 == ptr2 and ptr1 != ptr2 compare the addresses
inside the pointer variables for equality (do they point to the
same memory location?)

• ptr == NULL will check if ptr is 0 (good initialization value to
use)

• ptr1 < ptr2 compares addresses
• useful if pointer variables reference memory in the same array

for example (similar to comparing indices)

601.220 Intermediate Programming Pointer Operations



Pointer Arithmetic

• Operators +, -, +=, -= can be used with other pointers or
integers for the 2nd operand

• Most often used on pointers into arrays
• Doesn’t add the actual number, it adds that number times how
many bytes each element takes up based on the pointer base
type

• for variable int * p, code p+1 will in fact add 4 bytes
(sizeof(int)) to p’s address

601.220 Intermediate Programming Pointer Operations



Pointer Arithmetic and Arrays

• For a declared array like int a[10], a is “really” just a
(non-modifiable) address that starts a block of memory.

• Writing a is generally the same as writing &a[0]
• a[3] is a synonym for *(a + 3) (offset three from pointer to
start of array)

• &a[3] is a synonym for a + 3

601.220 Intermediate Programming Pointer Operations



Pointer Arithmetic and Arrays - example
// pointerArith.c:
#include <stdio.h>
#include <stdlib.h>
int main() {

int array[] = {2, 4, 6};

printf("array[1] = %d, ", array[1]);
printf(" *(array + 1) = %d, ", *(array+1));
printf(" array = %p\n", (void *) array);
printf(" &array[1] = %p, ",(void *) &array[1]);
printf(" array + 1 = %p\n", (void *) (array + 1));
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic pointerArith.c
$ ./a.out
array[1] = 4, *(array + 1) = 4, array = 0x7ffec6ceab1c
&array[1] = 0x7ffec6ceab20, array + 1 = 0x7ffec6ceab20

601.220 Intermediate Programming Pointer Operations



Checkpoint Poll!

What is the correct output?

#include <stdio.h>

int main() {
int a[] = {1, 1, 2, 3, 4};
printf("%d ", (*a) + 7);
printf("%d ", *(a + 4));
printf("%d ", *(&a[1] + 1));
return 0;

}

A. 2 4 3

B. 8 4 2

C. 8 5 2

D. 7 4 2

E. The program does not
compile and/or has an error.

601.220 Intermediate Programming Pointer Operations



Pointer difference (subtraction)
• ptrdiff_t is a predefined type in library stddef.h
• this is the resulting type when subtracting pointers (memory
addresses)

• essentially equivalent to the long integer type
// pointerDiff.c:
#include <stdio.h>
#include <stddef.h>
int main() {

int array[] = {2, 4, 6, 8, 10, 12, 14, 16};
int * start = &array[0]; // first element address
int * end = &array[7]; // last element address
ptrdiff_t capacity = end - start + 1; // number of elements in array

printf("start = %p, ", (void *) start);
printf("end = %p, ", (void *) end);
printf("capacity = %ld\n", capacity); // print as long int
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic pointerDiff.c
$ ./a.out
start = 0x7ffcd6663220, end = 0x7ffcd666323c, capacity = 8

601.220 Intermediate Programming Pointer Operations



Checkpoint Poll!

What is the correct output?

char str1[] = "original";
char * str2;

str2 = str1;
*str2 = 'O';
str2 += 3;
*str2 = 'G';
str2 += 3;

printf("%s %s\n", str1, str2);

A. original Original

B. original OriGinal

C. OriGinal OriGinal

D. OriGinal al

E. The program does not
compile and/or has an error.

601.220 Intermediate Programming Pointer Operations



Pointers vs. C-strings - common errors

Given these declarations

char str1[] = "original";
char * str2;

• Why is this bad code? strcpy(str2, str1);
• Why is this bad code? str1 += 3;
• Why doesn’t str2 = str1; make a copy of “original”?

601.220 Intermediate Programming Pointer Operations



Pointers vs. C-strings - common error explanations

Given these declarations

char str1[] = "original";
char * str2;

• strcpy(str2, str1); will crash because memory for str2
was never allocated

• str1 += 3; will not compile because we cannot change the
address stored in a statically declared array variable

• str2 = str1; only copies the memory address stored in str1,
not the whole array

601.220 Intermediate Programming Pointer Operations


