601.220 Intermediate Programming

Dynamic memory allocation

601.220 Intermediate Programming Dynamic memory allocation



Outline

® Stack frame vs. heap memory
® Dynamic memory allocation using malloc and free
® realloc and calloc

601.220 Intermediate Programming Dynamic memory allocation



Limitations of arrays allocated within a stack frame

® | ast time, we saw that arrays allocated within a stack frame
(“static allocation”) have several limitations
® Size of array is limited by size of stack frame
® Arrays created within a called functions stack frame can’t be
accessed by calling function (since lifetime of array ends when
called function returns)
® Prior to C99, another limitation existed:
® Needed to know size of array prior to run-time - couldn't ask
for array of size n when n was a value input by user!

® To get around these limitations, we can use dynamic allocation

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

® Dynamically-allocated memory is located in a part of memory
separate from the stack; it lives on “the heap”

® Dynamically-allocated memory lives as long as we like (until
entire program ends)

® We don't necessarily lose access to it when function call returns
® This means we can return it to a calling function!

® Dynamically-allocated memory is not subject to size limitations
based on stack frame size, since it's not part of the stack

® The size of a dynamically-allocated block of memory can be
decided at run time

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

® Dynamically-allocated memory solves lots of problems. ..

® But there is a catch: since it is not automatically reclaimed
when function call ends, we are responsible for telling system
when we're through with this memory

® that is, we need to remember to deallocate it

® allocated memory is not available to other programs/users until
we deallocate it

® failing to deallocate memory is the cause of “memory leaks”

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

® To allocate memory, we can use a command named malloc
(memory allocate) from <stdlib.h> (need to #include):
// allocate space for one int on heap
int *ip = malloc(sizeof (int));

// check if allocation succeeded
if (ip == NULL) { /*output error messagex*/ }

e After allocation with malloc, memory has not been initialized

// give dynamically-allocated int an initial value
*ip = 0;

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

® When usage of dynamically-allocated int is complete, deallocate
it using free command on address of the memory on the heap:

// notify system that we're through with heap int
free(ip);

// avoid accidental attempt to use this pointer
// to access the released space later
ip = NULL;

601.220 Intermediate Programming Dynamic memory allocation



Where should deallocation occur?

® Deallocation need not happen in same function where
allocation occurred. ..

® .. but some function needs to deallocate the block of memory!

® Programmer’s responsibility is to determine where deallocation
will occur, and then ensure that it really does happen

601.220 Intermediate Programming Dynamic memory allocation



realloc

Reallocates the given area of memory
Can be used for both expanding and contracting
The area must have been previously (dynamically) allocated
The reallocation is done either by:

® expanding or contracting the existing area, if possible

® allocating a new memory block of new size bytes
® On success:

® returns the pointer to the beginning of newly allocated memory
On failure:

® returns a null pointer

601.220 Intermediate Programming Dynamic memory allocation



realloc example

// realloc_exzample.c:
#include <stdio.h>
#include <stdlib.h>

int main()

{
int *ptr = malloc(sizeof (int)*100);
int i = 0;
for (; i < 100; ++i) {
ptrlil = i;
}

ptr = realloc(ptr, sizeof(int) * 10000); // reallocate to ezpand

for(i = 0; i < 10000; ++i) { // start from indez 0 again
ptrli]l = i;

¥

return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic realloc_example.c

220 Intermediate Programmi i allocation



calloc

® Similar to malloc, but initializes all bits to 0

#include <stdio.h>
#include <stdlib.h>

int main () {
int *pData = calloc (10, sizeof(int));
for (int i = 0; i < 10; i++) {
printf("%d ", pDatal[il);
}
}

$ gcc -std=c99 -Wall -Wextra -pedantic calloc_example.c
$ ./a.out
00000000O00O0

601.220 Intermediate Programming Dynamic memory allocation



