
601.220 Intermediate Programming

Dynamic memory allocation

601.220 Intermediate Programming Dynamic memory allocation



Outline

• Stack frame vs. heap memory
• Dynamic memory allocation using malloc and free
• realloc and calloc

601.220 Intermediate Programming Dynamic memory allocation



Limitations of arrays allocated within a stack frame

• Last time, we saw that arrays allocated within a stack frame
(“static allocation”) have several limitations

• Size of array is limited by size of stack frame
• Arrays created within a called functions stack frame can’t be

accessed by calling function (since lifetime of array ends when
called function returns)

• Prior to C99, another limitation existed:
• Needed to know size of array prior to run-time - couldn’t ask

for array of size n when n was a value input by user!
• To get around these limitations, we can use dynamic allocation

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

• Dynamically-allocated memory is located in a part of memory
separate from the stack; it lives on “the heap”

• Dynamically-allocated memory lives as long as we like (until
entire program ends)

• We don’t necessarily lose access to it when function call returns
• This means we can return it to a calling function!

• Dynamically-allocated memory is not subject to size limitations
based on stack frame size, since it’s not part of the stack

• The size of a dynamically-allocated block of memory can be
decided at run time

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

• Dynamically-allocated memory solves lots of problems. . .

• But there is a catch: since it is not automatically reclaimed
when function call ends, we are responsible for telling system
when we’re through with this memory

• that is, we need to remember to deallocate it
• allocated memory is not available to other programs/users until

we deallocate it
• failing to deallocate memory is the cause of “memory leaks”

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

• To allocate memory, we can use a command named malloc
(memory allocate) from <stdlib.h> (need to #include):

// allocate space for one int on heap
int *ip = malloc(sizeof(int));
// check if allocation succeeded
if (ip == NULL) { /*output error message*/ }

• After allocation with malloc, memory has not been initialized
// give dynamically-allocated int an initial value
*ip = 0;

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

• When usage of dynamically-allocated int is complete, deallocate
it using free command on address of the memory on the heap:

// notify system that we're through with heap int
free(ip);

// avoid accidental attempt to use this pointer
// to access the released space later
ip = NULL;

601.220 Intermediate Programming Dynamic memory allocation



Where should deallocation occur?

• Deallocation need not happen in same function where
allocation occurred. . .

• . . . but some function needs to deallocate the block of memory!
• Programmer’s responsibility is to determine where deallocation

will occur, and then ensure that it really does happen

601.220 Intermediate Programming Dynamic memory allocation



realloc

• Reallocates the given area of memory
• Can be used for both expanding and contracting
• The area must have been previously (dynamically) allocated
• The reallocation is done either by:

• expanding or contracting the existing area, if possible
• allocating a new memory block of new size bytes

• On success:
• returns the pointer to the beginning of newly allocated memory

• On failure:
• returns a null pointer

601.220 Intermediate Programming Dynamic memory allocation



realloc example

// realloc_example.c:
#include <stdio.h>
#include <stdlib.h>

int main()
{

int *ptr = malloc(sizeof(int)*100);
int i = 0;
for (; i < 100; ++i) {

ptr[i] = i;
}

ptr = realloc(ptr, sizeof(int) * 10000); // reallocate to expand

for(i = 0; i < 10000; ++i) { // start from index 0 again
ptr[i] = i;

}
return 0;

}

$ gcc -std=c99 -Wall -Wextra -pedantic realloc_example.c

601.220 Intermediate Programming Dynamic memory allocation



calloc

• Similar to malloc, but initializes all bits to 0

#include <stdio.h>
#include <stdlib.h>

int main () {
int *pData = calloc (10, sizeof(int));
for (int i = 0; i < 10; i++) {

printf("%d ", pData[i]);
}

}

$ gcc -std=c99 -Wall -Wextra -pedantic calloc_example.c
$ ./a.out
0 0 0 0 0 0 0 0 0 0

601.220 Intermediate Programming Dynamic memory allocation


