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Outline

® Stack frame vs. heap memory
® Dynamic memory allocation using malloc and free
® realloc and calloc
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Limitations of arrays allocated within a stack frame

® | ast time, we saw that arrays allocated within a stack frame
(“static allocation”) have several limitations
® Size of array is limited by size of stack frame
® Arrays created within a called functions stack frame can’t be
accessed by calling function (since lifetime of array ends when
called function returns)
® Prior to C99, another limitation existed:
® Needed to know size of array prior to run-time - couldn't ask
for array of size n when n was a value input by user!

® To get around these limitations, we can use dynamic allocation

601.220 Intermediate Programming Dynamic memory allocation



Dynamically-allocated memory

® Dynamically-allocated memory is located in a part of memory
separate from the stack; it lives on “the heap”

® Dynamically-allocated memory lives as long as we like (until
entire program ends)

® We don't necessarily lose access to it when function call returns
® This means we can return it to a calling function!

® Dynamically-allocated memory is not subject to size limitations
based on stack frame size, since it's not part of the stack

® The size of a dynamically-allocated block of memory can be
decided at run time
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Dynamically-allocated memory

® Dynamically-allocated memory solves lots of problems. ..

® But there is a catch: since it is not automatically reclaimed
when function call ends, we are responsible for telling system
when we're through with this memory

® that is, we need to remember to deallocate it

® allocated memory is not available to other programs/users until
we deallocate it

® failing to deallocate memory is the cause of “memory leaks”
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Dynamically-allocated memory

® To allocate memory, we can use a command named malloc
(memory allocate) from <stdlib.h> (need to #include):
// allocate space for one int on heap
int *ip = malloc(sizeof (int));

// check if allocation succeeded
if (ip == NULL) { /*output error messagex*/ }

e After allocation with malloc, memory has not been initialized

// give dynamically-allocated int an initial value
*ip = 0;
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Dynamically-allocated memory

® When usage of dynamically-allocated int is complete, deallocate
it using free command on address of the memory on the heap:

// notify system that we're through with heap int
free(ip);

// avoid accidental attempt to use this pointer
// to access the released space later
ip = NULL;
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Where should deallocation occur?

® Deallocation need not happen in same function where
allocation occurred. ..

® .. but some function needs to deallocate the block of memory!

® Programmer’s responsibility is to determine where deallocation
will occur, and then ensure that it really does happen
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realloc

Reallocates the given area of memory
Can be used for both expanding and contracting
The area must have been previously (dynamically) allocated
The reallocation is done either by:

® expanding or contracting the existing area, if possible

® allocating a new memory block of new size bytes
® On success:

® returns the pointer to the beginning of newly allocated memory
On failure:

® returns a null pointer
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realloc example

// realloc_exzample.c:
#include <stdio.h>
#include <stdlib.h>

int main()

{
int *ptr = malloc(sizeof (int)*100);
int i = 0;
for (; i < 100; ++i) {
ptrlil = i;
}

ptr = realloc(ptr, sizeof(int) * 10000); // reallocate to ezpand

for(i = 0; i < 10000; ++i) { // start from indez 0 again
ptrli]l = i;

¥

return O;

}

$ gcc -std=c99 -Wall -Wextra -pedantic realloc_example.c
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calloc

® Similar to malloc, but initializes all bits to 0

#include <stdio.h>
#include <stdlib.h>

int main () {
int *pData = calloc (10, sizeof(int));
for (int i = 0; i < 10; i++) {
printf("%d ", pDatal[il);
}
}

$ gcc -std=c99 -Wall -Wextra -pedantic calloc_example.c
$ ./a.out
00000000O00O0
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