
601.220 Intermediate Programming

Recursion

601.220 Intermediate Programming Recursion



Recursion

• Most computation involves some form of repetition
• Repeatedly make incremental progress until problem is solved

• You know how to use loops to expression repetition
• for loops, while loops, etc.

• Recursion is another way to express repetition
• Can be more succint than loops!
• Leads to elegant solutions for some problems
• Has some (potential) downsides

601.220 Intermediate Programming Recursion



How recursion works

Recursion works by

• dividing a large problem into one or more smaller problems, and
then

• extending the solution to the smaller problem(s) to be a
solution for the large problem

Recursion is implemented by having a function make a call to itself
using different arguments. (This will seem really weird until you get
the hang of it.)

A function calling itself is called a recursive call.

601.220 Intermediate Programming Recursion



Requirements for using recursion

When solving a problem using recursion:

1. The smaller problem(s) (“subproblems”) must have the same
form as the larger problem. Subproblems are solved recursively,
by making another call to the same method using different
parameter values.

2. There must be one or more instances of the problem that can
be solved without recursion: these are known as the base cases.

3. All recursive calls must make progress towards a base case, so
that the computation will eventually complete.

601.220 Intermediate Programming Recursion



Example problem
Let’s say we want to compute the sum of the integers from 1 to n:

n∑
i=1

i = 1 + 2 + . . . + (n − 1) + n

Could write a loop:

unsigned sum_1_to_n(unsigned n) {
unsigned sum = 0;
for (unsigned i = 1; i <= n; i++) {

sum = sum + i;
}
return sum;

}

601.220 Intermediate Programming Recursion



Solving using recursion

Key to solving a problem recursively is to find one or more
subproblems of the same form within the larger problem.

In the case of summing integers 1 to n:

n∑
i=1

i = 1 + 2 + . . . + (n − 1) + n

Can you find a subproblem or subproblems?

This is the sum of integers from 1 to n - 1! It has the same form as
the overall problem, and can be solved recursively.

601.220 Intermediate Programming Recursion



Solving using recursion

Key to solving a problem recursively is to find one or more
subproblems of the same form within the larger problem.

In the case of summing integers 1 to n:

n∑
i=1

i = 1 + 2 + . . . + (n − 1) + n

Can you find a subproblem or subproblems?

This is the sum of integers from 1 to n - 1! It has the same form as
the overall problem, and can be solved recursively.

601.220 Intermediate Programming Recursion



Solving using recursion

Summing integers 1 to n recursively:

n∑
i=1

i = 1 + 2 + . . . + (n − 1)︸ ︷︷ ︸ +n

=
n−1∑
i=1

i + n

Note that solving the subproblem almost solves the entire problem.
All we need to do is add n to the sum of integers 1 to n − 1, and
that gives us the sum of integers 1 to n. This is called extending the
solution to the subproblem(s).

601.220 Intermediate Programming Recursion



Base cases

When solving a problem recursively, we need one or more base cases
that can be solved without recursion. The recursion makes progress
by working towards a base case.

Intuitively, base cases are “small” or “trivial” instances of the
problem.

In the case of summing integers 1 to n, when n = 0, the sum is 0.

Another possibility: when n = 1, sum is 1.

601.220 Intermediate Programming Recursion



Implementing as a recursive function

unsigned sum_1_to_n(unsigned n) {
if (n == 0) { // check base case

return 0;
}
return sum_1_to_n(n - 1) + n;

}

601.220 Intermediate Programming Recursion



Does it work?
// sumrec.c:
#include <stdio.h>

unsigned sum_1_to_n(unsigned n) {
if (n == 0) { // check base case

return 0;
}
return sum_1_to_n(n - 1) + n;

}

int main(void) {
printf("sum 1..2 is %u\n", sum_1_to_n(2));
printf("sum 1..10 is %u\n", sum_1_to_n(10));
printf("sum 1..100 is %u\n", sum_1_to_n(100));
return 0;

}

$ gcc sumrec.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
sum 1..2 is 3
sum 1..10 is 55
sum 1..100 is 5050

601.220 Intermediate Programming Recursion



Advice for using recursion successfully

Let’s discuss a few techniques and principles that you should find
useful when solving problems using recursion.

601.220 Intermediate Programming Recursion



Always check base case(s) first

A recursive function must check to see whether a base case was
reached before attempting to solve a subproblem recursively.

Failing to do this could lead to an infinite recursion.

601.220 Intermediate Programming Recursion



Subproblems must be smaller than the overall problem

Recursive calls must make progress towards the base case. This
means that the arguments passed to a recursive call must describe a
subproblem that is smaller (simpler) than the overall problem.

Trying to solve the same problem recursively is, by definition, an
infinite recursion.

601.220 Intermediate Programming Recursion



Make subproblem(s) as large as possible

When thinking about how to find one or more subproblems in the
overall problem, keep in mind that you want the subproblem(s) to
be as large as possible.

This ensures that only a small amount of work is required to extend
the solution to the subproblem(s) to be a solution to the overall
problem.

601.220 Intermediate Programming Recursion



The downside to recursion

Every function call requires an stack frame.

The stack frame is an area of memory where variables and temporary
values for a function call are stored, as well as the return address
indicating the code location where the function call will return to.

Every recursive function call creates a new stack frame.

• The call stack, where stack frames are allocated, is limited in
size.

• “Deep” recursion may fail because the call stack size is
exceeded.

601.220 Intermediate Programming Recursion



Tracing a recursive computation

Consider this program:

unsigned sum_1_to_n(unsigned n) {
if (n == 0) { // check base case

return 0;
}
return sum_1_to_n(n - 1) + n;

}

int main(void) {
printf("%u\n", sum_1_to_n(2));
return 0;

}

601.220 Intermediate Programming Recursion



Tracing a recursive computation

Note that the maximum number of stack frames at the “deepest”
point is proportional to the value of n passed to sum_1_to_n

601.220 Intermediate Programming Recursion



Recursion vs. loop

• Avoid deep recursion
• Recursion is great for computations on inherently recursive
structures

• Many data structures are recursive (e.g., trees)
• Recursion is great for “divide and conquer” algorithms

• E.g., merge sort, quicksort

601.220 Intermediate Programming Recursion


