
601.220 Intermediate Programming

Git

601.220 Intermediate Programming Git



Plan for today

• Git
• Cloning our class public repositories using git

601.220 Intermediate Programming Git



Git

• Git is a way of sharing files; like DropBox or GoogleDrive, only
much more powerful (and great for sharing code)

• Distributed version control
• Facilitates collaboration, snapshots, sharing
• Basic software skill, along with programming
• Works with any programming language; really, any project that
consists of mostly text files

601.220 Intermediate Programming Git



Git

• From www.git-tower.com/learn/git/ebook/command-line/remote-repositories/introduction

601.220 Intermediate Programming Git

https://www.git-tower.com/learn/git/ebook/command-line/remote-repositories/introduction


Git

• From www.slideshare.net/origamiaddict/git-get-ready-to-use-it

601.220 Intermediate Programming Git

http://www.slideshare.net/origamiaddict/git-get-ready-to-use-it


Git
• In your working copy, you can go about your usual business:

• Editing files (with emacs, vim, etc)
• Compiling and executing files

• But you’ll also perform some repo-related tasks
• git add <file>: add to project (“stage a file”)
• git commit -m "commit message": update local repo to

include changes since last commit (“take a local snapshot”)
• git push: send changes up to remote repo (on github)
• git status: check what’s been modified or staged, etc.

• Can’t modify a repo directly using plain-old mv or rm; all
interactions are via git command

• git mv <file> <file>: rename a file
• git rm <file>: remove a file (delete it)

• Full list: https://education.github.com/git-cheat-sheet-education.pdf

601.220 Intermediate Programming Git

https://education.github.com/git-cheat-sheet-education.pdf


Git

• Files that are part of your project (you git add’ed them) are
called tracked

• Tracked files can be in one of a few states
• Unmodified (same as copy in local repo)
• Modified (different from copy in local repo but not yet staged)
• Staged (next git commit will update repo)

• editing files: Unmodified -> Modified
• git add: Modified -> Staged
• git commit: Staged -> Unmodified
• Information about changes in a copy of the repo is stored across
several non-human-readable files in a subdirectory called .git

• This subdirectory gets created for you when you clone a repo

601.220 Intermediate Programming Git



Git

• Files that are not yet part of your project (“unstaged”) are
called untracked

• When you create a new file; it’s unstaged until you git add it
• But git will notice it, and it will appear as unstaged if you check

your git status
• Some untracked files are are files that we want git to “ignore”,
because we’ll never want to include them in the remote repo

• Tell git to ignore a file by adding it to .gitignore file
• Good candidates for ignoring might be a.out, gitlog.txt
• Anything generated by the compiler (executables, .o
files) should be in .gitignore

• We’ll discuss this again soon

601.220 Intermediate Programming Git



Git

• After git clone occurs, syncing between local and remote
repos accomplished via git pull and git push

• git pull: local repo asks for most updated copy from remote
repo

• git push: local repo sends all recent commits up to remote
repo

601.220 Intermediate Programming Git



Git

• Workflow Suggestions
• Start each work session with git pull, to ensure your local

copy is up-to-date
• After you complete work on a small task, commit it
• Include a message with every commit to explain what changes

you committed (use -m, or you might be forced into an editor
to create one!)

• Make sure you commit and push before the end of each work
session

• To see a record of your latest commits displayed on the screen,
you can type git log

601.220 Intermediate Programming Git



Git
• Common git command orders

• Step 1: Before you start working
git pull

• Step 2: After you’ve finished your edit
git add <files you edited>

• Step 3: Commit your changes with comments
git commit -m <comments>

• Step 4: Pull it one more time to sync with new updates if any
git pull

• Step 5: Solve conflicts if it happends (between your edit and
new updates) and repeat step 2-5

• Step 6: Push back to the repo
git push

601.220 Intermediate Programming Git



Git

• Don’t be discouraged if git concepts are elusive at first
• You can get by with just a few key ideas
• commit early, commit often
• Tutorials and explanations linked from Resources section of
Piazza (go to General Resources area, then click on Tools
Reference)

• Lots of help available from CAs, instructors, Google, . . .

601.220 Intermediate Programming Git



Git

• Today, we want everyone to have access to class resources for
this section

• our class repository (repo) is hosted by github.com
• can view the shared files in a web browser, but we want local

copies to work with
• today you’ll clone the class repo into your ugrad account
• when instructors add more to the repo, you can pull down

updates
• unlike Dropbox, git doesn’t auto-sync the files in the repo

601.220 Intermediate Programming Git



Our public file repository for this course

https://github.com/jhu-ip/cs220-s22-public

• contains files shared with you for use in this course
• open a web browser and view this repo

601.220 Intermediate Programming Git



Getting a local copy of the repo

On ugrad, get into your home directory:

cd ~ or just cd

Now clone the repo:
git clone https://github.com/jhu-ip/cs220-s22-public.git

601.220 Intermediate Programming Git


