601.220 Intermediate Programming

Git

601.220 Intermediate Programming Git



Plan for today

* Git
e Cloning our class public repositories using git

601.220 Intermediate Programming Git



Git

® Git is a way of sharing files; like DropBox or GoogleDrive, only
much more powerful (and great for sharing code)

Distributed version control

Facilitates collaboration, snapshots, sharing

Basic software skill, along with programming

Works with any programming language; really, any project that
consists of mostly text files

601.220 Intermediate Programming Git



Git

REMOTE REPOSITORY

PUSH X CLONE

-
—
—

'WORKING LOCAL
REPOSITORY

-, coMmIT
+ CHANGES

DEVELOPER A DEVELOPER B

® From www.git-tower.com/learn/git/ebook/command-line/remote-repositories/introduction

Git

220 Intermediate Programmin,



https://www.git-tower.com/learn/git/ebook/command-line/remote-repositories/introduction

COMMIT

STASH SAVE

COMMIT -A
STASH POP
MERGE
STASH APPLY
REVERT

CHECKOUT

® From www.slideshare.net/origamiaddict/git-get-ready-to-use-it

220 Intermediate Programmi Git



http://www.slideshare.net/origamiaddict/git-get-ready-to-use-it

Git

® |n your working copy, you can go about your usual business:
® Editing files (with emacs, vim, etc)
® Compiling and executing files
But you'll also perform some repo-related tasks
® git add <file>: add to project (“stage a file")
® git commit -m "commit message": update local repo to
include changes since last commit (“take a local snapshot")
® git push: send changes up to remote repo (on github)
® git status: check what's been modified or staged, etc.
Can't modify a repo directly using plain-old mv or rm; all
interactions are via git command
® git mv <file> <file>: rename a file
® git rm <file>: remove a file (delete it)

Full list: https://education.github.com/git-cheat-sheet-education.pdf

601.220 Intermediate Programming Git


https://education.github.com/git-cheat-sheet-education.pdf

Git

e Files that are part of your project (you git add'ed them) are
called tracked
® Tracked files can be in one of a few states
® Unmodified (same as copy in local repo)
® Modified (different from copy in local repo but not yet staged)
® Staged (next git commit will update repo)

editing files: Unmodified -> Modified

git add: Modified -> Staged

git commit: Staged -> Unmodified

Information about changes in a copy of the repo is stored across

several non-human-readable files in a subdirectory called .git
® This subdirectory gets created for you when you clone a repo

601.220 Intermediate Programming Git



Git

® Files that are not yet part of your project (“unstaged”) are
called untracked
® When you create a new file; it's unstaged until you git add it
® But git will notice it, and it will appear as unstaged if you check
your git status
® Some untracked files are are files that we want git to “ignore”,
because we'll never want to include them in the remote repo
® Tell git to ignore a file by adding it to .gitignore file
® Good candidates for ignoring might be a.out, gitlog.txt
® Anything generated by the compiler (executables, .o
files) should be in .gitignore
We'll discuss this again soon

601.220 Intermediate Programming Git



Git

e After git clone occurs, syncing between local and remote
repos accomplished via git pull and git push
® git pull: local repo asks for most updated copy from remote
repo
® git push: local repo sends all recent commits up to remote
repo

601.220 Intermediate Programming Git



Git

® Workflow Suggestions

® Start each work session with git pull, to ensure your local
copy is up-to-date

® After you complete work on a small task, commit it

® Include a message with every commit to explain what changes
you committed (use -m, or you might be forced into an editor
to create onel)

® Make sure you commit and push before the end of each work
session

® To see a record of your latest commits displayed on the screen,
you can type git log

601.220 Intermediate Programming Git



Git

® Common git command orders
® Step 1: Before you start working
git pull

® Step 2: After you've finished your edit
git add <files you edited>

® Step 3: Commit your changes with comments
git commit -m <comments>

® Step 4: Pull it one more time to sync with new updates if any
git pull

® Step 5: Solve conflicts if it happends (between your edit and
new updates) and repeat step 2-5

® Step 6: Push back to the repo
git push

601.220 Intermediate Programming Git



Git

Don't be discouraged if git concepts are elusive at first
You can get by with just a few key ideas

commit early, commit often

Tutorials and explanations linked from Resources section of
Piazza (go to General Resources area, then click on Tools
Reference)

® | ots of help available from CAs, instructors, Google, ...

601.220 Intermediate Programming Git



Git

® Today, we want everyone to have access to class resources for
this section

® our class repository (repo) is hosted by github.com

can view the shared files in a web browser, but we want local
copies to work with

® today you'll clone the class repo into your ugrad account

® when instructors add more to the repo, you can pull down
updates

® unlike Dropbox, git doesn't auto-sync the files in the repo

601.220 Intermediate Programming



Our public file repository for this course

https://github.com/jhu-ip/cs220-s22-public

® contains files shared with you for use in this course
® open a web browser and view this repo

601.220 Intermediate Programming Git



Getting a local copy of the repo

On ugrad, get into your home directory:
cd ~ or just cd

Now clone the repo:

git clone https://github.com/jhu-ip/cs220-s22-public.git

601.220 Intermediate Programming Git



