
601.220 Intermediate Programming

Hello world program in C

601.220 Intermediate Programming Hello world program in C



Outline

• Compiling and running a simple C program

601.220 Intermediate Programming Hello world program in C



Having technical issues? Feeling stuck?

• Consult posted slides and tutorials for reference
• Don’t be afraid to ask for help

Where to ask
• Ask questions on Piazza
• Instructor office hours will be announced soon
• Course assistants (CAs) will set office hours soon

601.220 Intermediate Programming Hello world program in C



Hello world

// hello_world.c:
#include <stdio.h>

// Print "Hello, world!" followed by newline and exit
int main(void) {

printf("Hello, world!\n");
return 0;

}

$ gcc hello_world.c -std=c99 -pedantic -Wall -Wextra
$ ./a.out
Hello, world!

601.220 Intermediate Programming Hello world program in C



Basic C/C++ programming workflow

• Edit file (using emacs or vim) hello_world.c
• Compile using GNU C compiler (gcc) to compile, link, and
create executable

• If compile-time errors reported, edit .c file and re-compile
• Run the executable file

• If run-time errors reported/detected, go back to edit step

601.220 Intermediate Programming Hello world program in C



Inside the compiler

• Step 1: preprocessor
• Bring together all the code that belongs together
• Process the directives that start with #, such as #include

• We’ll soon also see #define
• Step 2: compiler

• Turn human-readable source code into object code
• Might yield warnings & errors if your code has mistakes that are
“visible” to compiler

• Step 3: linker
• Bring together all the relevant object code into a single

executable file
• Might yield warnings & errors if relevant code is missing, there’s

a naming conflict, etc

601.220 Intermediate Programming Hello world program in C



Hello world

// hello_world.c:
#include <stdio.h>

// Print "Hello, world!" followed by newline and exit
int main(void) {

printf("Hello, world!\n");
return 0;

}

• #include is a preprocessor directive, similar to Java import
• main is a function, every program has exactly one main
• int is its return type
• main(void) says that main takes no parameters

601.220 Intermediate Programming Hello world program in C



Hello world

// hello_world.c:
#include <stdio.h>

// Print "Hello, world!" followed by newline and exit
int main(void) {

printf("Hello, world!\n");
return 0;

}

• printf prints a string to “standard out” (terminal)
• \n denotes the newline character
• return 0 means “program completed with no errors”
• Explanatory comment before function is good practice

• // Print ...

601.220 Intermediate Programming Hello world program in C



Basic C/C++ programming workflow

• To compile hello_world.c and link to give executable file:
• gcc -std=c99 -Wall -Wextra -pedantic hello_world.c

• To run executable file named a.out:
• ./a.out

601.220 Intermediate Programming Hello world program in C



Hello world
What if we omit #include <stdio.h>?:

// hello_world_err.c:

// Print "Hello, world!" followed by newline and exit
int main(void) {

printf("Hello, world!\n");
return 0;

}

$ gcc hello_world_err.c -std=c99 -pedantic -Wall -Wextra
hello_world_err.c: In function ‘main’:
hello_world_err.c:4:5: warning: implicit declaration of function ‘printf’ [-Wimplicit-function-declaration]

4 | printf("Hello, world!\n");
| ^~~~~~

hello_world_err.c:4:5: warning: incompatible implicit declaration of built-in function ‘printf’
hello_world_err.c:1:1: note: include ‘<stdio.h>’ or provide a declaration of ‘printf’

+++ |+#include <stdio.h>
1 |601.220 Intermediate Programming Hello world program in C



Multiple copies of code

• Imagine if every time you wanted to snapshot (or “branch” or
share) your project, you made a copy

$ ls cs220-eg/
hello_world.c Makefile README

$ cp -r cs220-eg cs220-eg-2020-09-02

$ ls cs220-eg cs220-eg-2020-09-02
cs220-eg:
hello_world.c Makefile README

cs220-eg-2020-09-02:
hello_world.c Makefile README

601.220 Intermediate Programming Hello world program in C



Multiple copies of code

• Suppose you “snapshot” or share your code frequently, and at
different times on different machines

• Up to you to remember “meanings” and relationships of copies
• Lots of copies = lots of space; waste, redundancy
• Difficult for team members to track where the latest version of

each file lives

601.220 Intermediate Programming Hello world program in C



Git to the rescue

• A repository (“repo”) stores all versions of all project files, and
their entire histories back to the beginning of the project

• Repos eliminate disadvantages of the “lots of copies” method,
while still facilitating snapshotting, branching, sharing

• Cleverly organized to avoid storing redundant data
• Repo (master/origin) can be local (on your computer) or

remote (e.g., on bitbucket.org or github.com)

601.220 Intermediate Programming Hello world program in C


