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Outline

• Overview of course
• Signing up for Piazza
• CS account
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One Course, Multiple Sections

• Multiple sections taught in parallel
• Course materials (exercises, homeworks, etc.) usually the same
• Check course site/syllabus for your section details
(time/location/instructor)
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Course goal

• By end of course, you’ll be able to create large*, complex,
correct programs in C and C++

• For some students, this comes easily; for others, not so much
• Differences in background play a large part
• If you’re struggling, don’t panic! We’re here to help.

• To become a strong programmer, you need to practice, practice,
practice
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Content Delivery and Course Format

• In-person class meetings
• Pre-recorded videos, slides, recap questions, and exercises will
be posted

• Must watch videos before attending the class (recap questions
recommended too)

• Class sessions on MWF:
• We review solutions for previous session’s exercises, review main

concepts from the assigned materials, and go over recap
questions. We also answer your questions, discuss homeworks &
projects, and finally, work on the new exercise.
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Synchronous participation is important

• We will dedicate significant time during our in-person class
meetings to working with you one-on-one

• This is a great time to ask questions!
• About an exercise, homework, project, exam review question, or

anything you have a question about
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Programming is more than coding
• In introductory courses, you learn to write code
• You also spend a good deal of time debugging it
• In fact, the larger your programs get, the larger the percentage
of time you’ll spend debugging it

• But debugging isn’t really (always) fun - how can we avoid it?
• Short-term lazy vs. long-term lazy

• How far in the future are you thinking when you consider the
consequences of your actions?

• In some cases, extra work up front can reduce total time spent
• Sometimes its difficult to see the benefits in a single short
homework assignment, but real commercial software is
developed over years by large teams of people

• We aim to help you build skills that will allow you to contribute
on large-scale projects
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Building skills

• This course is primarily intended to help you build skills (rather
than just increase knowledge)

• Building skills takes practice, and meaningful practice takes
time

• Please ask for help when you need it!
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Grade calculation

•
•
•
•
•
•
•

•
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Written homework assignments (done individually)
Coding homework assignments (done individually)
Midterm coding project (in teams)
Midterm exam (date TBD)
Final coding project (in teams)
Final exam (TBD)
Participation - strongly recommended to fully participate
in class sessions
In class exercises - strongly recommended to complete
them all



Advice about coding homework

•
assignments

• These form an essential part of the learning experience
• Take these seriously!

• Start early, ask questions early
• Make steady progress
• Strive to create robust, understandable, and elegant code
• Do not share code or copy code we will report violations to the

student conduct office
• If you don’t take these assignments seriously, you are unlikely
to have a good experience in the course
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A significant chunk of your grade is individual coding



Advice about in-class exercises
• Throughout the semester we will work on exercises during class
sessions

• These don’t count towards your grade directly
• But they are very important for mastering course topics!
• Recommendations:

• Complete all of these
• If you do not finish them in class, finish on your own outside of

class
• Submit to gradescope for autograder feedback
• Past students have repeatedly reported that finishing exercises

has saved time when completing the homeworks and projects!
• We generally won’t post solutions to the exercises

• Completing these on your own is far more valuable than just
looking at our solution

• If you need help, ask for it in class, in office hours, or on Piazza
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Course resources

• Gradescope: where you’ll submit homework and receive grades
• You’ll receive an invitation to Gradescope site via email later

this week
• Piazza: See course website for link

• We’ll use Piazza as our primary form of course communication;
you’re expected to check it regularly!

• Please ask questions using Piazza, rather than sending us email
• Can make posts which are anonymous to other students
• Can make posts which are targeted to Instructors (includes

instructors and CAs) only, or just to the instructor of your
section

• Please read the post on posting guidelines
• Sign up for Piazza right now!
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CS account

• You will need a CS account for this class
• Obtain a ugrad CS account

• if you have one already, then use that
• if you are a CS major/minor, get a “permanent one” from CS

IT (https://support.cs.jhu.edu/wiki/Obtaining_CS_Computer_
Accounts)

• otherwise, send the “instructors” a private post on Piazza with
subject “Request for a temp cs account”

• will get back to you as soon as possible with a user and
password
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