
601.220 Intermediate Programming

Introduction to the course

601.220 Intermediate Programming Introduction to the course



Outline

• Overview of course
• Signing up for Piazza
• CS account

601.220 Intermediate Programming Introduction to the course



One Course, Multiple Sections

• Multiple sections taught in parallel
• Course materials (exercises, homeworks, etc.) usually the same
• Check course site/syllabus for your section details
(time/location/instructor)

601.220 Intermediate Programming Introduction to the course



Course goal

• By end of course, you’ll be able to create large*, complex,
correct programs in C and C++

• For some students, this comes easily; for others, not so much
• Differences in background play a large part
• If you’re struggling, don’t panic! We’re here to help.

• To become a strong programmer, you need to practice, practice,
practice

601.220 Intermediate Programming Introduction to the course



Content Delivery and Course Format

• In-person class meetings
• Pre-recorded videos, slides, recap questions, and exercises will
be posted

• Must watch videos before attending the class (recap questions
recommended too)

• Class sessions on MWF:
• We review solutions for previous session’s exercises, review main

concepts from the assigned materials, and go over recap
questions. We also answer your questions, discuss homeworks &
projects, and finally, work on the new exercise.

601.220 Intermediate Programming Introduction to the course



Synchronous participation is important

• We will dedicate significant time during our in-person class
meetings to working with you one-on-one

• This is a great time to ask questions!
• About an exercise, homework, project, exam review question, or

anything you have a question about

601.220 Intermediate Programming Introduction to the course



Programming is more than coding
• In introductory courses, you learn to write code
• You also spend a good deal of time debugging it
• In fact, the larger your programs get, the larger the percentage
of time you’ll spend debugging it

• But debugging isn’t really (always) fun - how can we avoid it?
• Short-term lazy vs. long-term lazy

• How far in the future are you thinking when you consider the
consequences of your actions?

• In some cases, extra work up front can reduce total time spent
• Sometimes its difficult to see the benefits in a single short
homework assignment, but real commercial software is
developed over years by large teams of people

• We aim to help you build skills that will allow you to contribute
on large-scale projects

601.220 Intermediate Programming Introduction to the course



Building skills

• This course is primarily intended to help you build skills (rather
than just increase knowledge)

• Building skills takes practice, and meaningful practice takes
time

• Please ask for help when you need it!

601.220 Intermediate Programming Introduction to the course



Grade calculation

•
•
•
•
•
•
•

•

601.220 Intermediate Programming Introduction to the course

Written homework assignments (done individually)
Coding homework assignments (done individually)
Midterm coding project (in teams)
Midterm exam (date TBD)
Final coding project (in teams)
Final exam (TBD)
Participation - strongly recommended to fully participate
in class sessions
In class exercises - strongly recommended to complete
them all



Advice about coding homework

•
assignments

• These form an essential part of the learning experience
• Take these seriously!

• Start early, ask questions early
• Make steady progress
• Strive to create robust, understandable, and elegant code
• Do not share code or copy code we will report violations to the

student conduct office
• If you don’t take these assignments seriously, you are unlikely
to have a good experience in the course

601.220 Intermediate Programming Introduction to the course

A significant chunk of your grade is individual coding



Advice about in-class exercises
• Throughout the semester we will work on exercises during class
sessions

• These don’t count towards your grade directly
• But they are very important for mastering course topics!
• Recommendations:

• Complete all of these
• If you do not finish them in class, finish on your own outside of

class
• Submit to gradescope for autograder feedback
• Past students have repeatedly reported that finishing exercises

has saved time when completing the homeworks and projects!
• We generally won’t post solutions to the exercises

• Completing these on your own is far more valuable than just
looking at our solution

• If you need help, ask for it in class, in office hours, or on Piazza

601.220 Intermediate Programming Introduction to the course



Course resources

• Gradescope: where you’ll submit homework and receive grades
• You’ll receive an invitation to Gradescope site via email later

this week
• Piazza: See course website for link

• We’ll use Piazza as our primary form of course communication;
you’re expected to check it regularly!

• Please ask questions using Piazza, rather than sending us email
• Can make posts which are anonymous to other students
• Can make posts which are targeted to Instructors (includes

instructors and CAs) only, or just to the instructor of your
section

• Please read the post on posting guidelines
• Sign up for Piazza right now!

601.220 Intermediate Programming Introduction to the course

https://jhu-ip.github.io/cs220-summer22/


CS account

• You will need a CS account for this class
• Obtain a ugrad CS account

• if you have one already, then use that
• if you are a CS major/minor, get a “permanent one” from CS

IT (https://support.cs.jhu.edu/wiki/Obtaining_CS_Computer_
Accounts)

• otherwise, send the “instructors” a private post on Piazza with
subject “Request for a temp cs account”

• will get back to you as soon as possible with a user and
password

601.220 Intermediate Programming Introduction to the course

https://support.cs.jhu.edu/wiki/Obtaining_CS_Computer_Accounts
https://support.cs.jhu.edu/wiki/Obtaining_CS_Computer_Accounts



